	«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»										
	57:022 Principles of Design II Midterm Exam October 23, 1996										
	«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»«»										
Part	Ι	II	III	IV	V	VI	Total				
Possible Score	10	16	8	16	15	10	75				

«»«»«»«»«»«» PART I «»«»«»«»«»«»«»

Indicate the SLAM network model ("A" through "I") for each system described below. If no SLAM model is given, indicate "X" for "none".

- 1. Customers arriving at the post office wait in a single queue; each of the two postal workers serve the next customer at the head of the queue.
- 2. Vehicles arrive at a bank with a single teller window, with space for two additional waiting vehicles. When no waiting space is available, an arriving vehicle circles the block and tries again to enter the queue.
- 3. Vehicles arrive at a bank with a single teller window, with space for two additional waiting vehicles. When no waiting space is available, no vehicle enters the system.
- 4. Vehicles arrive at a bank with two teller windows, with a single queue having space for two additional waiting vehicles. When no waiting space is available, an arriving vehicle leaves instead of entering the system.
- 5. Two workers each individually prepare parts to be painted; a single spray painting machine is used by both workers, with a worker waiting for the machine if it is already in use.

Note that

- all activity durations in the SLAM networks below are constants -- none are random!
- first entity is created at time=0

An electronic device is made up of a large number of components. Every component is essential, so that the device will fail when the first component fails. The lifetime of each component is random, but its probability distribution is unknown. The manufacturer has provided a 90-day warranty on this device.

A test of the device is performed, in which fifty units of the device are operated simultaneously, and the time of the first six failures is noted, namely 41, 57, 62, 102, 165, and 185 days. (The test was then terminated at 185 days.) Letting R be the fraction of the devices surviving, "Cricket Graph" was used to prepare the following table and plot, with line fit:

We will make the assumption that the unit's lifetime has a Weibull distribution. Let i denote the "error", i.e., the vertical distance between data point #i and the line determined by Cricket Graph. (Use the table of the Gamma function below, interpolating as necessary).

1. The Cricket Graph program fits a line through the data points which minimizes

6	6	6
a. _i	b. _i	c. $({i})^{2}$
i=1	i=1	i=1
d. $\max_i \{i\}$	e. $\max_{i} \{ \mid i \mid \}$	f. none of the above

2. Based upon the above plot, the value of the "shape" parameter (k) of the probability dist'n is approximately $_____$.

3. Based upon the above plot, the value of the "location" parameter (u) of the probability dist'n is approximately ______.

 $_$ 4. For the distribution with the parameters you specified in (1) & (2), the failure rate is

a. increasing b. decreasing c. constant d. cannot be determined

	$\Gamma\left(1 + \frac{1}{k}\right)$										
ĸ	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
0 1 2 3	000 1.0000 0.8862 0.8930	0.8857	0.9407 0.8856	0.9236 0.8859	0.9114 0.8865	2.0000 0.9027 0.8873 0.8997	0.8966 0.8882	0.8922 0.8893	0.8893 0.8905	0.8874 0.8917	

«»«»«»«»«»«» PART IV «»«»«»«»«»«»«»

The times T_1 , ... T_{50} (in seconds) between arrivals of the first fifty vehicles at an intersection are recorded (the table on the left below):

Observed interarrival times										
0.0226392	0.768035	1.65885	3.08626	6.29563						
0.0485026	0.790591	1.66189	3.64492	7.04469						
0.236294	1.14222	1.68663	3.70833	7.58034						
0.412293	1.17618	1.98549	4.06761	7.97349						
0.44836	1.20924	2.03548	4.87876	7.98124						
0.477881	1.30452	2.07311	4.98918	9.20103						
0.480905	1.33905	2.12645	5.07361	10.5373						
0.514895	1.3464	2.15331	5.16394	13.7621						
0.603458	1.56215	2.62304	5.2581	14.9808						
0.716652	. 1.64656	3.0584	5.70407	16.0848						

+	$D(T_{2}+)$
t	P{T≤t}
1	0.23758100
2	0.41871726
3	0.55681899
4	0.66211038
5	0.74238653
6	0.80359060
7	0.85025374
8	0.88583060
ğ	0.91295508
10	0.93363530
11	0.94940229
12	0.96142335
13	0.97058843
14	0.97757606
15	0.98290356

The average of these interarrival times is 3.6865 seconds. We believe that the arrival process is Poisson. Based upon the computed average interarrival time above, the table on the right above is computed. The number of interarrival times are grouped into seven "cells":

i	interval	Oi	Ei	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$
1	0-1	12	11.879	0.00123
2	1-2	12	9.05681	0.95644
- 3	2-3	5	6.90509	0.52560
4	3-4	4		
5	4-6	7	7.07401	0.00077
6	6-8	5	4.112	0.19176
7	8-∞	5	5.70848	0.08792

The total of the numbers in the last column is D = 2.06751.

Indicate, for each statement, whether true ("+") or false ("o"):

- 1. The value of E4 (blanked in the table above) is between 6 and 7.
- 2. The probability p_3 that a car arrives in an interval [2,3], is F(3) F(2)
- $_$ 3. The CDF of a random variable T is $F(t) = P{T t}$
- _____ 4. The CDF of the distribution is assumed to be $F(t) = 1 e^{-t}$ where = 3.6865 sec.

	5. The number of observations, O_i , in interval #i should have the binomial distribution.										
	 6. The quantity D is assumed to have the chi-square distribution. 7. The chi-square distribution for this test will have 5 "degrees of freedom". 										
	8. The quantity $(E_i-O_i)^2/E_i$ is assumed to have the normal N(0,1) distribution.										
		ber of observa	tions, O _i , in	interval #i sh	ould have th	e Poisson					
	distributior										
		n of the squar	es of several	N(0,1) rando	m variables ł	as chi-square					
	distributior		1 0.0								
		ually has a me			, the probabi	lity that D					
		observed valu									
	-					d be accepted					
		for the intera				tomvol #:					
		ntity E _i is the									
		i-square distril antity D is assu									
		aller the value									
	tested.		, or D, the be		the distribu	tion being					
deg.of		Chi-se	quare Dist'n	$P\{D^2\}$							
freedo	m 99%	95%	90%	10%	5%	1%					
2	0.0201	0.103	0.211	4.605	5.991	9.210					
3	0.115	0.352	0.584	6.251	7.815	11.341					
4	0.297	0.711	1.064	7.779	9.488	13.277					
5	0.554	1.145	1.610	9.236	11.070	15.086					
6	0.872	1.635	2.204	10.645	12.592	16.812					

«»«»«»«»«»«» Part V «»«»«»«»«»«»«»

12.017

14.067

18.475

2.833

Five components (A,B,C,D, & E) are available for constructing a system. The probability that each component survives the <u>first</u> year of operation is 70% for A, B, & C, and 80% for D & E. For each system ((1) through (5) below, indicate:

(i) the letter of the SLAM network model which represents the system

(ii) for each of the three scenarios (a,b,c) below, whether the system will Fail or Survive (circle "F" or "S"):

(a) components A and C fail.

2.167

- (b) components B and D fail.
- (c) components C, D, & E fail.

(iii) the letter with the computation of the 1-year reliability (i.e., survival probability)

7

1.239

SLAM network	(a)	Scenario (b)	(c)	Reliability
	FIS	FIS	FIS	

SLAM network models:

Reliabilities:

- J. $1 (0.3)^3 (0.2)^2 = 0.99892$ K. $1 - [1 - (0.7)^3][1 - (0.8)^2] = 0.76348$ L. $[1 - (0.3)^3] [1 - (0.2)^2] = 0.93408$ M. $1 - (0.7)^3 (0.8)^2 = 0.78048$
- N. 1- $(0.7)^3[1-(0.2)^2] = 0.67072$ O. 1- $(0.3)^3[1-(0.8)^2] = 0.99028$ P. $[1 - (0.3)^3] (0.8)^2 = 0.62272$
- Q. None of the above

«»«»«»«»«»«» Part VI «»«»«»«»«»«»«»

Consider again the drive-up bank teller window system described repeatedly in class and your homework assignments.

```
GEN, BRICKER, BANKTELLERS, 2/11/1993, , , , , , , 72;
 1
 2
   LIM,2,1,50;
 3 INIT,0,480;
 4 NETWORK;
 5
          CREATE, EXPON(5.0),,1;
 б
          QUE(1),0,4,BALK(OVFLO);
 7
          ACT(1)/1,EXPON(2.0);
 8
          COLCT,INTVL(1),CUSTOMER_TIME,20/.5/.5;
 9
          TERM;
10 OVFLO COLCT, FIRST;
          TERM,1;
11
12
          END;
13 FIN;
```

SLAM II SUMMARY REPORT

CURRENT TIME 0.4081E+03 STATISTICAL ARRAYS CLEARED AT TIME 0.0000E+00

STATISTICS FOR VARIABLES BASED ON OBSERVATION

	MEAN VALUE		COEFF. OF VARIATION	 MAXIMUM VALUE	NO.OF OBS
CUSTOMER_TIME	0.303E+01 0.408E+03	0.286E+01 0.000E+00		 	88 1

FILE STATISTICS

FILE NUMBER	LABEL/TYPE		STANDARD DEVIATION	MAXIMUM LENGTH	CURRENT LENGTH	AVERAGE WAIT TIME
1	QUEUE	0.300	0.724	4	4	1.317
2	CALENDAR	1.439	0.496	3	2	2.669

SERVICE ACTIVITY STATISTICS

ACT A	CT LABEL OR	SER	AVERAGE	STD	CUR .	AVERAGE	MAX IDL	MAX BSY	ENT
NUM S	TART NODE	CAP	UTIL	DEV	UTIL	BLOCK	TME/SER	TME/SER	CNT
1	QUEUE	1	0.439	0.50	1	0.00	17.35	29.23	88

OBS	RELA	UPPER											
FREÇ) FREQ	CELL LIM	0		20		40		60		80		100
			+	+	+	+	+	+	+	+	+	+	+
10	0.114	0.500E+00	+***	* * *									+
9	0.102	0.100E+01	+***	* *	С								+
16		0.150E+01	+***	* * * *	* * *		С						+
13		0.200E+01		* * * *	f				С				+
4		0.250E+01							С				+
7	0.080	0.300E+01	+***	*						С			+
5		0.350E+01								С			+
1		0.400E+01								C			+
3		0.450E+01									С		+
0		0.500E+01									С		+
2		0.550E+01									С		+
1		0.600E+01									С		+
3		0.650E+01									С		+
0		0.700E+01									С		+
4		0.750E+01										С	+
1		0.800E+01										C	+
2		0.850E+01										С	+
2		0.900E+01										(C +
2		0.950E+01											C +
2		0.100E+02											C+
0		0.105E+02											C+
1	0.011	INF	+*										C
			+	+	+	+	+	+	+	+	+	+	+
88			0		20		40		60		80		100
		**STATIS:			1 770770		משיט ע מ				* *		
		SIAIIS.	LTCD 1	FUR	VARIAE	Сůц	DAGED	, ON	ODGERV	AIION			
		MI	EAN	SI	ANDARD	C	DEFF.	OF	MINIMU	M M	AXIMU	M N).OF
		VZ	ALUE	DE	CVIATIC	N V	ARIATI	ON	VALUE		VALU	ΓE	OBS

HISTOGRAM NUMBER 1 CUSTOMER_TIME

CUSTOMER_TIME 0.303E+01 0.286E+01 0.944E+00 0.345E-01 0.110E+02 88 Fortran STOP

1. From the SLAM output, estimate the mean (average) time in the system. _

2. What fraction of the customers spend more than 5 minutes (total of both waiting and being served) at the bank? ____%

3. What fraction of the time was the teller idle? _____%

4. What is the maximum time that any customer spent in the system? _____min.

5. What is the average time that a customer spent in the waiting line <u>before</u> being served? _____min.