> 57:022 Principles of Design II
> Final Examination - Spring 1995


OOOOOOOO part ONE OOOOOOOO
In the game of "craps", we roll a pair of six-sided dice.

- On the first throw, if we roll a 7 or an 11 , we win right away.
- If, on the first throw, we roll a 2,3 , or 12 , we lose right away.
- If, however, we first roll a $4,5,6,8,9$, or 10 , then we keep rolling the dice until either
- we get a 7 (in which case we lose), or
- we get again the total which was rolled on the first throw (in which case we win)

Model a crap game as a Markov chain:
state 1 : initial state, before rolling the first time,
state 2 : a 4 or 10 was rolled on the first throw
state 3 : a 5 or 9 was rolled on the first throw
state 4: a 6 or 8 was rolled on the first throw
state 5 : win,
state 6 : loss.
The transition probability matrix is :

$\left.P=$| $[0$ | $6 / 36$ | $8 / 36$ | $10 / 36$ | $8 / 36$ | $4 / 36\rceil$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $27 / 36$ | 0 | 0 | $3 / 36$ | $6 / 36$ |
| 0 | 0 | $26 / 36$ | 0 | $4 / 36$ | $6 / 36$ |
| 0 | 0 | 0 | $25 / 36$ | $5 / 36$ | $6 / 36$ | \right\rvert\,

A = Absorbing Probabilities

| o | 5 | 6 |
| :---: | :---: | :---: |
| 1 | 0.49292929 | 0.50707071 |
| 2 | 0.33333333 | 0.66666667 |
| 3 | 0.4 | 0.6 |
| 4 | 0.45454545 | 0.54545455 |

E = Expected NO. Visits to Transient States


Assume that you are the person who is to roll the dice.
$\qquad$ 1. What is your probability of winning? (choose nearest value)
a. 0
b. $33 \%$
c. $49 \%$
d. $50 \%$
e. $51 \%$
f. $66 \%$
__ 2. If your first roll is a " 5 ", what is your probability of winning? (choose nearest value)
a. 0
b. $20 \%$
c. $40 \%$
d. $50 \%$
e. $60 \%$
f. $80 \%$
__ 3. If the first roll of the dice is a " 5 ", how many additional rolls are expected in the game? (choose nearest value)
a. one
b. two
c. three
d. four
e. five
f. six
$\qquad$ 4. Which value of the first roll has the highest probability of winning?
a. four
b. five
c. six
d. eight
e. nine
f. ten
$\qquad$ 5. What is the expected number of rolls of the dice in a crap game? (choose nearest value)
a. one
b. two
c. three
d. four
e. five
f. six
$\qquad$ 6. Which states are transient?
a. 1
b. 2,3,4
c. $1,2,3,4$
d. 5,6
e. $1,2,3,4,5,6$
f. NOTA
$\qquad$ 7. Which states are recurrent?
a. 1
b. 2,3,4
c. $1,2,3,4$
d. 5,6
e. $1,2,3,4,5,6$
f. NOTA

## OOOOOOOO PART TWO OOOOOOOO

Birth-Death Processes For each birth-death model of a queue in diagrams (1) through (8) below, indicate the correct Kendall's classification from among the following choices. (Note that some classifications might not be matched with any birth-death diagram, while others might be matched to more than one!)
a. $\mathrm{M} / \mathrm{M} / 1$
d. $\mathrm{M} / \mathrm{M} / 2$
g. $M / M / 1 / 4$
j. $M / M / 2 / 3$
b. $\mathrm{M} / \mathrm{M} / 4$
e. $M / M / 2 / 4$
h. $M / M / 2 / 4 / 4$
k. $\mathrm{M} / \mathrm{M} / 2 / 2 / 4$
c. $\mathrm{M} / \mathrm{M} / 1 / 4 / 4$
f. $M / M / 4 / 2$
i. $\mathrm{M} / \mathrm{M} / 4 / 4$

1. None of Above



OOOOOOOO part THREE OOOOOOOO
A machine operator has the task of keeping three machines running. Each machine runs for an average of one hour before it becomes jammed or otherwise needs the operator's attention. He then spends an average of ten minutes restoring the machine to running condition. Define a continuoustime Markov chain, with the state of the system beingthe number of machines which are not running.

1. True or False (circle): This Markov chain is a birth/death process.
2. Specify the letter for each of the transition rates:

a. $1 / \mathrm{hr}$
b. $2 / \mathrm{hr}$
c. $3 / \mathrm{hr}$
d. $4 / \mathrm{hr}$
e. $6 / \mathrm{hr}$
f. $8 / \mathrm{hr}$
g. $12 / \mathrm{hr}$
h. $18 / \mathrm{hr}$
i. None of the above
3. Which equation is used to compute the steady-state probability $\pi_{0}$ ?
(a.) $\pi_{0}=\left(\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}}+\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}}\right)^{-1}$
(e.) $\pi_{0}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}+\frac{\lambda_{2}}{\mu_{3}}$
(b.) $\frac{1}{\pi_{0}}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}}+\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}}$
(f.) $\pi_{0}=1+\left(\frac{\lambda_{0}}{\mu_{1}}\right)^{1}+\left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}+\left(\frac{\lambda_{2}}{\mu_{3}}\right)^{3}$
(c.) $\frac{1}{\pi_{0}}=1+\frac{\lambda_{0}}{\mu_{1}}+\frac{\lambda_{1}}{\mu_{2}}+\frac{\lambda_{2}}{\mu_{3}}$
(g.) $\frac{1}{\pi_{0}}=1+\left(\frac{\lambda_{0}}{\mu_{1}}\right)^{1}+\left(\frac{\lambda_{1}}{\mu_{2}}\right)^{2}+\left(\frac{\lambda_{2}}{\mu_{3}}\right)^{3}$
(d.) $\pi_{0}=\frac{1+\frac{\lambda_{0}}{\lambda_{1}}+\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{3}}}{1+\frac{\mu_{0}}{\mu_{1}}+\frac{\mu_{1}}{\mu_{2}}+\frac{\mu_{2}}{\mu_{3}}}$
(h.) None of the above
$\qquad$ 4. What is the relationship between $\pi_{0}$ and $\pi_{1}$ for this particular system?
a. $\pi_{1}=\pi_{0}$
b. $\pi_{1}=2 \pi_{0}$
c. $\pi_{1}=6 \pi_{0}$
d. $\pi_{1}=\frac{1}{2} \pi_{0}$
e. $\pi_{1}=\frac{1}{6} \pi_{0}$
f. None of the above
4. If the average number of machines not running (i.e., the number in the queueing system of the operator) is approximately 0.5 and the average number of machine jams per hour is 2.5 (i.e., approximately one every 0.4 hr ., what is the average turnaround time (waiting time plus operator's service time) to restore a machine to running condition? (Choose nearest answer.)
a. 0.1 hour
b. 0.2 hour
c. 0.3 hour
d. 0.4 hour
e. 0.5 hour
f. 0.6 hour

## OOOOOOOO PART FOUR OOOOOOOO

Note that

- all activity durations in the SLAM networks below are constants, and none are random!
- first entity is created at time=0

$\qquad$ 1. In Network $\mathbf{A}$, before the first created entity, there are how many entities are already in the network?
a. none
b. one
c. two
d. three
e. four
f. five
g. can't be determined h. NOTA
$\qquad$ 2. In Network A, the first entity to leave the system ( \& is terminated) leaves at time $=$
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA
$\qquad$ 3. In Network A, the first created entity enters the queue at time $=$
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA

$\qquad$ 4. In Network B , the first created entity begins being served at time $=$
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA
$\qquad$ 5. In Network B , the total number of entities which will leave the system is
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA

$\qquad$ 6. In Network $\mathbf{C}$, the total number of servers is
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA
$\qquad$ 7. In Network $\mathbf{C}$, the total number of queues is
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA

$\qquad$ 8. In Network D, the first entity which cannot enter the queue will arrive at the queue at time $=$
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA
$\qquad$ 9. In Network $\mathbf{D}$, the simulation will terminate at time $=$
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA
$\qquad$ 10. In Network D, the first entity to leave the system will leave at time $=$
a. 0
b. 1
c. 2
d. 3
e. 4
f. 5
g. 6
h. 7
i. 8
j. NOTA
$\qquad$ 11. Of the four SLAM networks, the network in which "blocking" may occur is
a. A
b. B
c. both C \& D
d. both A \& B
e. C
f. D
g. both $\mathrm{B} \& \mathrm{D}$
h. NOTA
$\qquad$ 12. Of the four SLAM networks, the network in which "balking" may occur is
a. A
b. B
c. both C \& D
d. both A \& B
e. C
f. D
g. both $\mathrm{B} \& \mathrm{D}$
h. NOTA

OOOOOOOO PART FIVE OOOOOOO○
$\qquad$ 1. The "Cumulative Distribution Function" (CDF) of a random variable $X$ is defined to be
a. $f(x)=P\{x \mid X\}$
b. $f(x)=P\{x\}$
c. $F(x)=P\{X=x\}$
d. $F(x)=P\{X \geq x\}$
e. $f(x)=P\{X \mid x\}$
f. $F(x)=P\{X \leq x\}$
$\qquad$ 2. The "Reliability" function of system with random lifetime $X$ is defined to be
a. $R(x)=P\{x \mid X\}$
b. $R(x)=P\{x\}$
c. $R(x)=P\{X=x\}$
d. $R(x)=P\{X \geq x\}$
e. $R(x)=P\{X \mid x\}$
f. $R(x)=P\{X \leq x\}$
$\qquad$ 3. Suppose that a steel chain is made up of many links. The strength of the chain is, of course, the strength of its weakest link, since the chain fails whenever any link fails. A reasonable assumption for the probability distribution for the strength of the chain is
a. Normal distribution
d. Weibull distribution
b. Exponential distribution
e. Gumbel distribution
c. Uniform distribution
f. None of the above
$\qquad$ 4. The CDF, i.e., $\mathrm{F}(\mathrm{x})$, of the Gumbel distribution with parameters a and u is
a. $\mathrm{e}^{\left(-\mathrm{e}^{-\alpha(\mathrm{x}-\mathrm{u})}\right)}$
b. $1-\mathrm{e}^{-\alpha(\mathrm{x}-\mathrm{u})}$
d. $\mathrm{u}-\frac{\ln (-\ln \mathrm{x})}{\alpha}$
e. $1-\frac{u \ln (-\ln x)}{\alpha}$
c． $1-\mathrm{e}^{-(\mathrm{x} / \mathrm{u})^{\alpha}}$
f．None of the above
$\qquad$ 5．The CDF ，i．e．， $\mathrm{F}(\mathrm{x})$ ，of the Weibull distribution with parameters k and u is
a． $\mathrm{e}^{\left(-\mathrm{e}^{-\mathrm{k}(\mathrm{x}-\mathrm{u})}\right)}$
d．$u-\frac{\ln (-\ln x)}{k}$
b． $1-\mathrm{e}^{-\mathrm{k}(\mathrm{x}-\mathrm{u})}$
e． $1-\frac{\mathrm{u} \ln (-\ln \mathrm{x})}{\mathrm{k}}$
c． $1-\mathrm{e}^{-(\mathrm{x} / \mathrm{u})^{\mathrm{k}}}$
f．None of the above
$\qquad$ 6．The＂coefficient of variation＂of a probability distribution with mean $\mu$ and variance $\sigma^{2}$ ，is
a．$\sqrt{\mu^{2}+\sigma^{2}}$
b．$\mu^{2} / \sigma^{2}$
c．$\sigma^{2} / \mu^{2}$
d．$\sigma / \mu$
e．$\mu / \sigma$
f．none of the above
$\qquad$ 7．The＂Gamma＂function $\Gamma$ is related to the factorial function for integers by
a．$\quad(1-\mathrm{k})=\mathrm{k}$ ！
d．$\Gamma(\mathrm{k})=(\mathrm{k}+1)$ ！
b．$\quad \Gamma(1+\mathrm{k})=\mathrm{k}$ ！
e．$\Gamma(1+1 / \mathrm{k})=\mathrm{k}$ ！
c．$\Gamma(\mathrm{k})=\mathrm{k}$ ！
f．None of the above

8．Given a set of data points $\left(x_{i}, y_{i}\right), i=1,2, \ldots n$ ，＂linear regression＂is a method for determining a relationship $y=f(x)$ which
a．minimizes the maximum error $\max \left\{y_{i}-f\left(x_{i}\right)\right\}$
b．minimizes the sum of the absolution values of the errors：$\sum_{i}\left|y_{i}-f\left(x_{i}\right)\right|$
c．minimizes the sum of the errors $\sum_{i} y_{i}-f\left(x_{i}\right)$
d．minimizes the sum of the squares of the errors：$\sum_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$
e．None of the above
O〇〇〇〇〇〇〇 Part SIX OOO○○○○○
Match SLAM diagram（A through I）\＆Queue Classification．If＂none＂，indicate＂N＂




## OOOOOOOO part SEvEN OOOOOOOO

The following SLAM network was used to simulate a system consisting of six components (where the time units are days). Refer to the output for five hundred runs to find (or estimate) the quantities below:
_ 1. The average lifetime of the system.
2. The probability that the system survives 800 days.
3. The time which the first failure occurred.
4. The reliability of the system if its designed lifetime is specified to be 60 days.

$\qquad$ 5. The diagram representing the system reliability is

**STATISTICS FOR VARIABLES BASED ON OBSERVATION**


Using the mean and standard deviation from the simulation output, the Weibull parameters $\mathrm{U}=528.961$ and $\mathrm{k}=1.29394$ are determined.
6. According to this result, the failure rate is
a. zero
b. increasing
c. decreasing
d. constant
e. cannot be determined from the information given

Based upon the cumulative probability function $\mathrm{F}(\mathrm{t})$ for this Weibull distribution, the following probabilities and expected values for each cell were calculated, where $t_{i}$ is the upper limit of the cell. The cells at the upper end were grouped, as indicated by the horizontal lines, so as to obtain a more even distribution of observations. Next we calculate for each cell (or group of cells) the square of the deviation of O from E , and divide by E , and then sum to obtain the chi-square statistic in the table on the right:

| 1 | $\mathrm{t}_{\mathrm{i}}$ | $\mathrm{P}_{1}$ | $\mathrm{E}_{\mathrm{i}}$ | $\mathrm{O}_{\mathrm{i}}$ | t | E | 0 | II |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 50 | 0.04615 | 23.07647 | 32 | 50 | 23.07647 | 32 | 3.45068 |
| 2 | 125 | 0.09713 | 48.56294 | 34 | 125 | 48.56294 | 34 | 4.36710 |
| 3 | 200 | 0.10402 | 52.00927 | 65 | 200 | 52.00927 | 65 | 3.24479 |
| 4 | 275 | 0.10151 | 50.75408 | 44 | 275 | 50.75408 | 44 | 0.89880 |
| 5 | 350 | 0.09467 | 47.33290 | 41 | 350 | 47.33290 | 41 | 0.84731 |
| 6 | 425 | 0.08577 | 42.88484 | 44 | 425 | 42.88484 | 44 | 0.02900 |
| 7 | 500 | 0.07610 | 38.05003 | 49 | 500 | 38.05003 | 49 | 3.15116 |
| 8 | 575 | 0.06643 | 33.21305 | 30 | 575 | 33.21305 | 30 | 0.31083 |
| 9 | 650 | 0.05721 | 28.60495 | 30 | 650 | 28.60495 | 30 | 0.06804 |
| 10 | 725 | 0.04871 | 24.35746 | 20 | 800 | 44.89371 | 39 | 0.77373 |
| 11 | 800 | 0.04107 | 20.53625 | 19 | 1025 | 43.10869 | 41 | 0.10315 |
| 12 | 875 | 0.03433 | 17.16303 | 12 | 00 | 47.50906 | 51 | 0.25651 |
| 13 | 950 | 0.02846 | 14.23084 | 15 | SUM | 500 | 500 | 17.5011 |
| 14 | 1025 | 0.02343 | 11.71482 | 14 | SUM | 50 | 50 | 17.511 |
| 15 | 1100 | 0.01916 | 9.57989 | 7 |  |  |  |  |
| 16 | 1175 | 0.01557 | 7.78599 | 8 |  |  |  |  |
| 17 | 1250 | 0.01258 | 6.29178 | 7 |  |  |  |  |
| 18 | 1325 | 0.01011 | 5.05699 | 9 |  |  |  |  |
| 19 | 1400 | 0.00809 | 4.04392 | 5 |  |  |  |  |
| 20 | 1475 | 0.00644 | 3.21825 | 4 |  |  |  |  |
| 21 | 1550 | 0.00510 | 2.54946 | 3 |  |  |  |  |

7. The number of degrees of freedom for the chi-square goodness-of-fit test is
a. 10
b. 11
c. 12
d. 13
e. 14
f. 15
g. 16
h. NOTA

The chi-square probability table indicates that with this \# of degrees of freedom, if the system lifetime does have the Weibull distribution with the parameters above, $\mathrm{P}\{\mathrm{D}>16.919\}$ is $\alpha=5 \%$.
8. Based upon this value, should we accept for the system lifetime the Weibull distribution model with the parameters $\mathrm{U}=528.961$ and $\mathrm{k}=1.29394$ ? (circle: Yes / No / Maybe )

