		FPPPPI	57:022 Final E.	P Princip xaminati P	les of D ion - Spr	esign II ing 1995			
Part: Possible Pts: Your score:	I	II 	III 	IV	V	VI	VII	Total	
		mmmm		PART	ONE n				

In the game of "craps", we roll a pair of six-sided dice.

- On the *first* throw, if we roll a 7 or an 11, we win right away.
- If, on the *first* throw, we roll a 2, 3, or 12, we lose right away.
- If, however, we first roll a 4, 5, 6, 8, 9, or 10, then we keep rolling the dice until either
 we get a 7 (in which case we lose), or
 - we get again the total which was rolled on the first throw (in which case we win)

Model a crap game as a Markov chain:

state 1 : initial state, before rolling the first time,

state 2 : a 4 or 10 was rolled on the first throw

state 3: a 5 or 9 was rolled on the first throw

state 4: a 6 or 8 was rolled on the first throw

state 5 : win,

state 6 : loss.

The transition probability matrix is :

	0	6/36	8/36	10/36	8/36	4/36			
	0	27/36	0	0	3/36	6/36			
D	0	0	26/36	0	4/36	6/36			
P =	0	0	0	25/36	5/36	6/36			
	0	0	0	0	1	0			
	0	0	0	0	0	1			
A = Absorbing Probabilities					$\mathbf{E} = \mathbf{E}\mathbf{x}$	pected N	O. Visit	s to Tra	ansient States
r					r				
0 5		6			o 1	2	3	4	
$m \mid$ 1 $\mid 0.4929292$	· 9 (0 50707	 071		m	0 6666	 667	0.8	0 90909091
$2 \mid 0.33333333$	3 (0.66666	667		2 0	4	007	0	0
3 0.4	(0.6			3 0	0		3.6	0
4 0.4545454	5 (0.54545	455		4 0	0		0	3.2727273

Assume that you are the person who is to roll the dice.

1. What is your probability of winning	ng? (<i>choose neare</i>	est value)	
a. 0	b. 33%	c.	49%
d. 50%	e. 51%	f.	66%
2. If your first roll is a "5", what is y	our probability of	f winning?	(choose nearest value)
a. 0	b. 20%	c.	40%
d. 50%	e. 60%	f.	80%

3. If the first roll of the dice is a "	5", how many additiona	<i>l</i> rolls are expected in the game?
(choose nearest value)		
a. one	b. two	c. three
d. four	e. five	f. six
4. Which value of the first roll has	s the highest probability	of winning?
a. four	b. five	c. six
d. eight	e. nine	f. ten
5. What is the expected number of	f rolls of the dice in a cra	ap game? (choose nearest value)
a. one	b. two	c. three
d. four	e. five	f. six
6. Which states are transient?		
a. 1	b. 2,3,4	c. 1,2,3,4
d. 5,6	e. 1,2,3,4,5,6	f. NOTA
7. Which states are recurrent?		
a. 1	b. 2,3,4	c. 1,2,3,4
d. 5,6	e. 1,2,3,4,5,6	f. NOTA
	PART TWO mm	m

Birth-Death Processes For each birth-death model of a queue in diagrams (1) through (8) below, indicate the correct Kendall's classification from among the following choices. (Note that some classifications might not be matched with any birth-death diagram, while others might be matched to more than one!)

PART THREE mmm

A machine operator has the task of keeping three machines running. Each machine runs for an average of one hour before it becomes jammed or otherwise needs the operator's attention. He then spends an average of ten minutes restoring the machine to running condition. Define a continuoustime Markov chain, with the state of the system beingthe number of machines which are **not** running.

1. True or False (circle): This Markov chain is a birth/death process.

2. Specify the letter for each of the transition rates:

$$0 _ 1 _ 2 _$$

$$\mu_1 _ \mu_2 _ \mu_3 _$$

$$\lambda_0 \qquad \lambda_1 \qquad \lambda_2 \qquad \mu_3 _$$

$$1 _ 2 _ \mu_3 _$$

$$\lambda_0 \qquad \lambda_1 \qquad \lambda_2 \qquad \mu_3 _$$

$$0 \boxed 1 \qquad \mu_1 \qquad \mu_2 \qquad \mu_3$$
a. 1/hr b. 2/hr c. 3/hr d. 4/hr e. 6/hr f. 8/hr f. 8/hr

3. Which equation is used to compute the steady-state probability 0?

(a.)
$$_{0} = \left(\frac{0}{\mu_{1}} + \frac{0}{\mu_{1}}\frac{1}{\mu_{2}} + \frac{0}{\mu_{1}}\frac{1}{\mu_{2}}\frac{2}{\mu_{1}}\right)^{-1}$$

(e.) $_{0} = 1 + \frac{0}{\mu_{1}} + \frac{1}{\mu_{2}} + \frac{2}{\mu_{3}}$
(b.) $\frac{1}{0} = 1 + \frac{0}{\mu_{1}} + \frac{0}{\mu_{1}}\frac{1}{\mu_{2}} + \frac{0}{\mu_{1}}\frac{1}{\mu_{2}}\frac{2}{\mu_{3}}$
(f.) $_{0} = 1 + \left(\frac{0}{\mu_{1}}\right)^{1} + \left(\frac{1}{\mu_{2}}\right)^{2} + \left(\frac{2}{\mu_{3}}\right)^{3}$
(c.) $\frac{1}{0} = 1 + \frac{0}{\mu_{1}} + \frac{1}{\mu_{2}} + \frac{2}{\mu_{3}}$
(g.) $\frac{1}{0} = 1 + \left(\frac{0}{\mu_{1}}\right)^{1} + \left(\frac{1}{\mu_{2}}\right)^{2} + \left(\frac{2}{\mu_{3}}\right)^{3}$
(d.) $0 = \frac{1 + \frac{0}{\mu_{1}} + \frac{1}{\mu_{2}} + \frac{2}{\mu_{3}}}{1 + \frac{\mu_{0}}{\mu_{1}} + \frac{\mu_{1}}{\mu_{2}} + \frac{\mu_{2}}{\mu_{3}}}$
(h.) None of the above

_4. What is the relationship between	$_0$ and	1 for this particular system?	?
a. $1^{=}$ 0		b. $1 = 2_0$ c	$1 = 6_0$
d. $1 = \frac{1}{2} 0$		e. $1 = \frac{1}{6} 0$ f	. None of the above

5. If the average number of machines *not* running (i.e., the number in the queueing system of the operator) is approximately 0.5 and the average number of machine jams per hour is 2.5 (i.e., approximately one every 0.4 hr., what is the average turnaround time (waiting time plus operator's service time) to restore a machine to running condition? (*Choose nearest answer.*)

 a. 0.1 hour
 b. 0.2 hour
 c. 0.3 hour

PART FOUR mmm

Note that

- all activity durations in the SLAM networks below are *constants*, and none are random!
- first entity is created at time=0

<u>1</u>. In Network **A**, *before* the first created entity, there are how many entities are already in the network?

6.	In Network C,	the total number	er of servers is			
	a. 0	b. 1	c. 2	d. 3	e. 4	
	f. 5	g. 6	h. 7	i. 8	j. NOTA	
7.	In Network C,	the total number	er of queues is			
	a. 0	b. 1	c. 2	d. 3	e. 4	
	f. 5	g. 6	h. 7	i. 8	j. NOTA	
• D)		2 2 4)>•	
			··			
8.	In Network D ,	the first entity	which <i>cannot en</i>	ter the queue	will arrive at the queue at t	time =
	a. 0	b. 1	c. 2	d. 3	e. 4	
	f. 5	g. 6	h. 7	i. 8	j. NOTA	
9.	In Network D ,	the simulation	will terminate at	time=	-	
	a. 0	b. 1	c. 2	d. 3	e. 4	
	f. 5	g. 6	h. 7	i. 8	j. NOTA	
1(). In Network D	, the first entity	to leave the sys	tem will leave	at time =	
	a. 0	b. 1	c. 2	d. 3	e. 4	
1.1	f. 5	g. 6	h. 7	1. 8	j. NOTA	
11	. Of the four SL	AM networks,	the network in v	which "blockin	g" may occur is	
	a. A	D. B f D	c. both C &	D d. both A	ά Β	
10	e. C Of the four SI	I. D	g. Dolli D o	vhich "holking	" may occur is	
12		h R	c both $C &$	D d both A	& R	
	e. C	f. D	g. both B &	z D h. NOTA		
			0			
		nininin	PART FI	VE minim		
1	The "Courselation	Distribution	Even eti e e " (CDE) - f		_
1.	Ine Cumulativ	\mathbf{v} = Distribution .	Function (CDF) of a random $\mathbf{E}(\mathbf{x}) = \mathbf{P}(\mathbf{X} \cdot \mathbf{x})$	variable \mathbf{X} is defined to be	e
	a. $I(X) = F\{X \mid h = f(x) = P\{y\}$		u.	$f(\mathbf{x}) = \mathbf{P}\{\mathbf{X} \mid \mathbf{x}\}$	· }	
	0. $f(x) = I\{x\}$ c. $F(x) = P\{X\}$	=x }	f 1	$F(\mathbf{x}) = P\{\mathbf{X} \mid \mathbf{x}\}$	}	
2.	The "Reliability	" function of s	vstem with rand	om lifetime X	is defined to be	
	a. $R(x) = P\{x\}$	X }	d.	$R(x) = P\{X \mid x\}$:}	
	b. $R(x) = P\{x\}$	}	e. 1	$R(x) = P\{X x\}$		
	c. $R(x) = P\{X\}$	X=x }	f. 1	$R(x) = P\{X \mid x\}$	}	
3.	Suppose that a s	steel chain is m	ade up of many	links. The str	ength of the chain is, of c	ourse,
	the strength of	its weakest lin	k, since the chain	n fails whenev	er any link fails. A reasor	nable
	assumption for	the probability	distribution for	the strength o	t the chain is	
	a. Normal dist	ribution	d.	Weibull distric	oution	
	o. Exponential	stribution	e. f	None of the ab		
	c. Onnorman	Sulbuioli	1. /	wone of the ab	<i>UVE</i>	
4.	The CDF. i.e I	F(x), of the Gu	mbel distributio	n with parame	ters a and u is	
	· · · · · · · · · · · · · · · · · · ·	. ,,		$\ln(-\ln x)$		
	· · · ·					
	a. $e^{(-e^{-}(x-u))}$		d. 1	u		
	a. $e^{(-e^{-(x-u)})}$		d.	$u - \underbrace{u \ln (-\ln x)}_{1 - u \ln (-\ln x)}$		

c.	1	- e-(x/u)	f.	None of the above	ş
··	-	0	1.		-

5. The CDF, i.e., F(x), of the Weibull distribution with parameters k and u is

a. $e^{(-e^{-k(x-u)})}$ b. $1 - e^{-k(x-u)}$ c. $1 - e^{-(x/u)^{-k}}$ d. $u - \frac{\ln(-\ln x)}{k}$ e. $1 - \frac{u \ln(-\ln x)}{k}$ f. None of the above

_ 6. The "coefficient of variation" of a probability distribution with mean μ and variance ², is

_____7. The "Gamma" function is related to the factorial function for integers by

a.	(1-k) = k!	d. $(k) = (k+1)!$	
b.	(1+k) = k!	e. $(1+1/k) = k!$	
c.	$(\mathbf{k}) = \mathbf{k}!$	f. None of the abo	ve

8. Given a set of data points (x_i, y_i) , i=1,2,...n, "linear regression" is a method for determining a relationship y = f(x) which

- a. minimizes the maximum error $\mbox{ max} \left\{ y_i \mbox{ } f(x_i) \right\}$
- b. minimizes the sum of the absolution values of the errors: $i |y_i f(x_i)|$
- c. minimizes the sum of the errors $i y_i f(x_i)$
- d. minimizes the sum of the squares of the errors: $(y_i f(x_i))^2$
- e. None of the above

Match SLAM diagram (A through I) & Queue Classification. If "none", indicate "N"

mmm P

PART SEVEN

The following SLAM network was used to simulate a system consisting of six components (where the time units are days). Refer to the output for five hundred runs to find (or estimate) the quantities below:

- 1. The average lifetime of the system.
- 2. The probability that the system survives 800 days.
- 3. The time which the first failure occurred.
- 4. The reliability of the system if its designed lifetime is specified to be 60 days.

____ 5. The diagram representing the system reliability is

STATISTICS FOR VARIABLES BASED ON OBSERVATION

MEAN	STANDARD	COEFF. OF	MINIMUM	MAXIMUM	NO.OF
VALUE	DEVIATION	VARIATION	VALUE	VALUE	OBS

FAIL TIME 0.489E+03 0.381E+03 0.780E+00 0.209E+00 0.217E+04 500

HISTOGRAM NUMBER 1** FAIL TIME

OBS	RELA	UPPER											
FREÇ	Q FREQ	CELL LIM	0		20		40		60		80		100
			+	+	+	+	+	+	+	+	+	+	+
32	0.064	0.500E+02	+***										+
34	0.068	0.125E+03	+***	С									+
65	0.130	0.200E+03	+***	* * * *		С							+
44	0.088	0.275E+03	+***	*			С						+
41	0.082	0.350E+03	+***	*				С					+
44	0.088	0.425E+03	+***	*				C	2				+
49	0.098	0.500E+03	+***	* *					С				+
30	0.060	0.575E+03	+***							С			+
30	0.060	0.650E+03	+***							(2		+
20	0.040	0.725E+03	+**								С		+
19	0.038	0.800E+03	+**								С		+
12	0.024	0.875E+03	+*								C	!	+
15	0.030	0.950E+03	+**									С	+
14	0.028	0.103E+04	+*									С	+
7	0.014	0.110E+04	+*									С	+
8	0.016	0.118E+04	+*									С	+
7	0.014	0.125E+04	+*										C +
9	0.018	0.133E+04	+*										C +
5	0.010	0.140E+04	+*										C +
4	0.008	0.148E+04	+										C+
3	0.006	0.155E+04	+										C+
8	0.016	INF	+*										С
			+	+	+	+	+	+	+	+	+	+	+
500			0		20		40		60		80		100

Using the mean and standard deviation from the simulation output, the Weibull parameters U=528.961 and k=1.29394 are determined.

6. According to this result, t	he failure r	ate is	
a. zero	b.	increasing	c. decreasing
d. constant	e.	cannot be det	ermined from the information given

Based upon the cumulative probability function F(t) for this Weibull distribution, the following probabilities and expected values for each cell were calculated, where t_i is the upper limit of the cell. The cells at the upper end were grouped, as indicated by the horizontal lines, so as to obtain a more even distribution of observations. Next we calculate for each cell (or group of cells) the square of the deviation of O from E, and divide by E, and then sum to obtain the chi-square statistic in the table on the right:

i	ti	Рi	Ei	Οi	t	E	0	D
1 2 3 4 5 6 7 8 9 10 11 12	50 125 200 275 350 425 500 575 650 725 800 875	0.04615 0.09713 0.10402 0.10151 0.09467 0.08577 0.07610 0.06643 0.05721 0.04871 0.04107	23.07647 48.56294 52.00927 50.75408 47.33290 42.88484 38.05003 33.21305 28.60495 24.35746 20.53625 17.16303	32 34 65 44 41 49 30 30 20 19 12	50 125 200 275 350 425 500 575 650 800 1025 00	23.07647 48.56294 52.00927 50.75408 47.33290 42.88484 38.05003 33.21305 28.60495 44.89371 43.10869 47.50906	32 34 65 44 41 49 30 30 39 41 51	3.45068 4.36710 3.24479 0.89880 0.84731 0.02900 3.15116 0.31083 0.06804 0.77373 0.10315 0.25651
13 14	950 1025	0.02846 0.02343	14.23084 11.71482	15 14	SUM	500	500	17.5011
15 16 17 18 19 20 21	1100 1175 1250 1325 1400 1475 1550	0.01916 0.01557 0.01258 0.01011 0.00809 0.00644 0.00510	9.57989 7.78599 6.29178 5.05699 4.04392 3.21825 2.54946	7 8 7 9 5 4 3				

7. The number of	degrees of freedom for th	e chi-square goodness-o	f-fit test is
a. 10	b. 11	c. 12	d. 13
e. 14	f. 15	g. 16	h. NOTA

The chi-square probability table indicates that with this # of degrees of freedom, if the system lifetime does have the Weibull distribution with the parameters above, $P\{D>16.919\}$ is =5%.

8. Based upon this value, should we accept for the system lifetime the Weibull distribution model with the parameters U=528.961 and k=1.29394? (*circle*: Yes / No / Maybe)