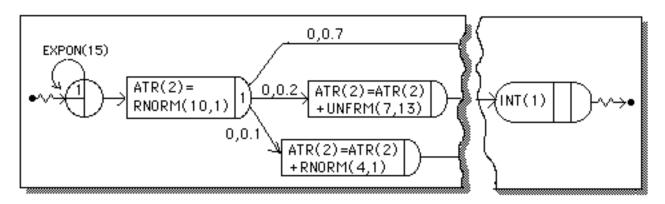
57:022 Principles of Design II Final Exam - May 13, 1993

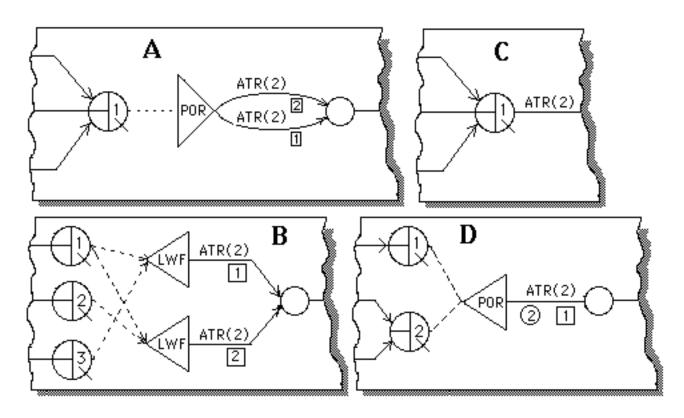
Part: Pts. Score	I. 14	II. 23	III. 20	IV. 8	V. 10	VI. 10	VII. 20	VIII 20	Total 125
e the number	corresp	onding	to the co	orrect n	robabili	itv distri	bution i	n each l	blank below

Note that some distributions may apply in m a. the number of cars passing throug b. the number of trucks among the filight	th an intersection during a 1-minute green light. irst 10 vehicles to arrive at an intersection during a red
c. The sum of ten N(0,1) random v d. the time until the arrival of the sec e. the total weight of a group of pers	variables cond car at an intersection during a red light sons on an elevator, when loaded to its capacity of 18
f. The time between the arrivals of the graph of the M/M. h. the lifetime of an electronic device necessary for the device to function in the result of tossing a single coin	the first and second vehicle during a red light. /1 queueing system e with several dozen components which might fail (each on)
j. number of defective items found with the sum of the squares of ten N(i) l. the number of items produced in or before producing the next	when testing a batch of 10 0,1) random variables order to obtain 4 acceptable items, if each is tested of flow into the Coralville Reservoir next year
n. the completion time of a large proj	ject with random task durations
Probability distributions: 1. Bernouilli 2. Binomial 3. Poisson 4. Erlang (Gamma) with k>1 5. Gumbel 6. Weibull 7. Beta	8. Geometric 9. Exponential 10. Pascal (negative binomial) 11. Normal 12. Uniform 13. Chi-square 14. Triangular
decreasing.	False: nential distribution, its failure rate ("hazard rate") is ry in the "Activity-on-Arrow" representation of a
d. If 3 components of a system have a reliability, then both are required to fure. The "Inverse transformation" techn	me between arrivals has the Poisson distribution. a parallel configuration with respect to system action in order for the system to function. anique may be used to generate time between arrivals in
seconds, we would expect the server tog. If 3 components of a system have a	n arrival rate 2/minute and service time averaging 20 be busy more than 75% of the time. a series configuration with respect to system reliability, e first when it fails, and the system then fails when the
	N represents the capacity of the waiting line.

 i. PERT assumes that the project duration has a Normal distribution. i. PERT assumes that each activity's duration has a Normal distribution. k. The exponential distribution is a special case of an Erlang distribution. l. In an M/M/2 queueing system, at most 2 customers may be in the system at any time.
m. In an M/M/1 queueing system, the greek letter—is the probability that the server is busy.
n. In an M/M/1 queueing system, o represents the probability that the server is idle.
o. The gamma function $(n) = (n-1)!$ for positive integer values of n.
p. For an infinite-capacity one-server queue (M/M/1), a steady state exists only if the arrival rate is less than the service rate.
q. If 3 components of a system have a parallel configuration with respect to system reliability, then the system lifetime is the maximum of the component lifetimesr. In a Poisson arrival process, the number of arrivals during an hour has the Poisson distribution.
s. In an M/M/1 queueing system, with an average of 15 seconds between arrivals and an average of 2 customers in the system, we would expect the average time spent by a customer
in the system to be at least 1 minutet. The exponential distribution is a special case of a Weibull distribution. u. If we
(i) test 100 lightbulbs, recording the failure time of each, (ii) prepare a histogram indicating number of failures on five consecutive days (where the
last failure occurred on the fifth day), (iii) use the mean and standard deviation of the failure times to estimate the parameter of the Weibull distribution,
then we would assume 3 degrees of freedom when performing the Chi-Square goodness of fit test.
v. If we plot the lifetimes of the 100 lightbulbs in (v) on Weibull probability paper, and the lifetimes do in fact have a Weibull distribution, the result will be (approximately) a straight line with slope equal to the "shape" parameter k.
w. Estimating the Weibull parameters by plotting the failure times on Weibull probability paper as in (v) requires that the test continue until all 100 lightbulbs have failed.
(III.) For each of the following statements about SLAM, indicate "+" if True and "O" if False:
a. An assembly node is a special case of a SELECT node.
b. A queue node with two identical servers may also be modeled as an AWAIT node
followed by a FREE node, with 2 units of resourcec. An AWAIT node is a special type of a queue node.
d. A SLAM network requires at least one CREATE node.
e. The activity preceding a queue node with blocking must be a service activity.
f. When an entity arrives at a terminate node, the simulation ends.
g. In SLAM, an assembly node is a special type of select node. h. A SLAM model of a project employs the "Activity-on-Node" rather than "Activity-on-
Arrow" representation of the project.
 i. At an AWAIT node, entities may wait for either a gate or a resource. j. If, on two successive days, you run the same simulation model (i.e., with the same input file) in which some activities have random durations, you should expect to obtain slightly
different statistics.
k. A service activity cannot be pre-emptedl. Two AWAIT nodes must use different file numbers.
i. Two AwAiT nodes must use different the numbersm. The activity preceding a queue node with balking must be a service activity.
n. Entities may balk when arriving at an AWAIT node with limited space to waito. Entities may wait at a QUEUE node for a GATE to open.

57:022 Final Exam - May 13, 1993		page 3		
 p. When two entities are waiting for a gate to open, and the gate then opens, both entities simultaneously proceed to the next node. q. An activity following a queue node must be a service activity. r. A COLCT node is used to accumulate statistics in successive runs of a simulation model. s. INT(1) means that you wish statistics collected on the interarrival times of entities at this node. t. When an entity arrives at a CLOSE node to close a gate, then any entities which follow it may not pass through that node until the gate is opened again. 				
minimini				
(IV.) Study the following SLAM network revalues for parameters A through S in the 2 mag. D	etworks.	below appropriate C F I		
(1.) 1 (4.) EXPON(5) (7.) RNORM(2,0.5)	(2.) 2 (5.) EXPON(10) (8.) UNFRM(5,10)	(3.) 3 (6.) EXPON(60) (9.) 0 (i.e., zero)		
Job arrivals at a machine form a Poisson process, arriving at the rate of one every five minutes. They are processed, one at a time, on the machine, which is subject to breakdown. Processing time is normally distributed with mean 2 minutes and standard deviation $^{1}/_{2}$ minute. Breakdowns occur in a completely random fashion, an average of 1 per hour. When a breakdown occurs, job processing is interrupted while the machine is repaired. Repair times are uniformly distributed between 5 and 10 minutes.				
•— <u>•</u>	MACHINE 1 A B]		
MACHINE/E D	MACHINE F	÷∙		
H				
■ AND A Z MACHINE 2	I MACHINE G)		
rmmmmmm				


(V.) Customers arrive at a barber shop with 2 barbers. 70% of the customers want a haircut only, while 20% want a shave also, and 10% a shampoo also. The shop employs two barbers. The shop is modeled as a SLAM network as below. A portion has been removed. For each case below, indicate the fragment (A through D) of the network which should be inserted, or indicate **N** if "none" is appropriate.


 Both barbers are identical, and do all three functions
 Barber #1 does not shave customers, and #2 does not

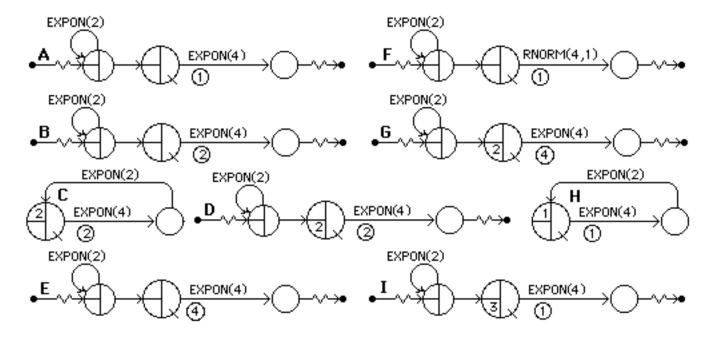
t shampoo hair Customers requiring a shave or shampoo are served only by barber #2

Customers prefer barber #2 if both are available

Both barbers give priority to customers requiring 2 services

(VI.) Match SLAM diagram (**A** through **I**) & Queue Classification. If "none", indicate "N"

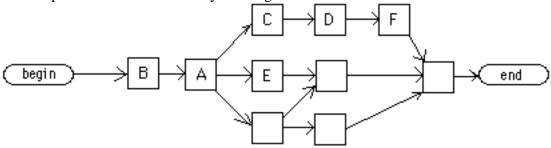
_____ M/M/1

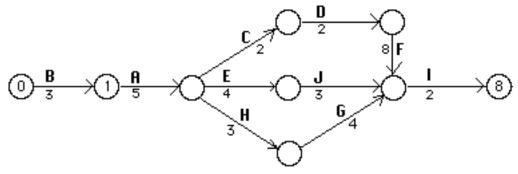

____ M/M/1/2

____ M/G/1

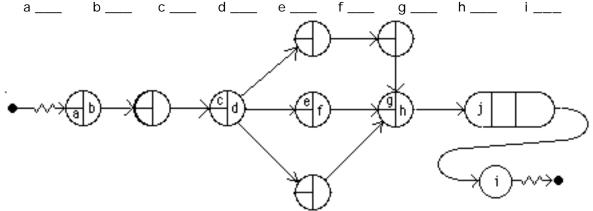
____ M/M/4

____ M/M/2/4

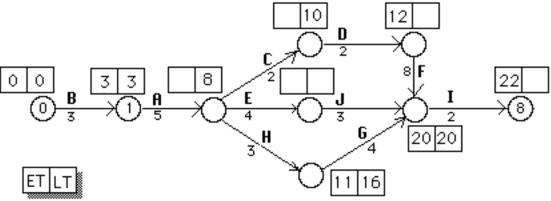

____ M/M/2/4


(VII.) Consider the project:

	1 0	Predecessor		Duration (days)	
Activity	Description	Activities	Mean	Std Dev	
Α	Walls & ceiling	В	5	2	
В	Foundation	none	3	1	
C	Roof timbers	A	2	1	
D	Roof sheathing	C	2	1	
E	Electrical wiring	A	4	2	
F	Roof shingles	D	8	2	
G	Exterior siding	H	4	1	
H	Windows	A	3	1	
I	Paint	F,G,J	2	1	
J	Inside wall board	E,H	3	1	


1. Complete the AON network by labeling the nodes:

2. Complete the AOA & the corresponding SLAM networks below by inserting any "dummy" activities which are necessary, and labeling the nodes.



3. Give numerical values (0, 1, 2, 3, 4, or) of "a" - "i" on the SLAM network below.

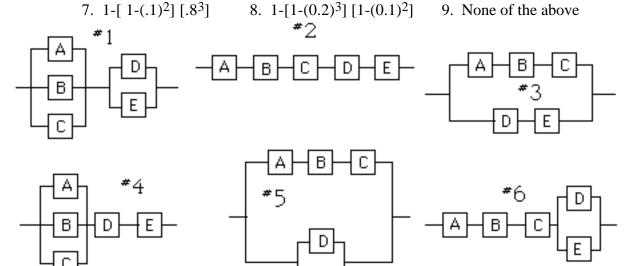
- 4. "j" on the SLAM network above should indicate which type of statistic?

 Circle: LAST INT(1) BETWEEN FIRST
- 5. Complete the ETs (earliest times) & LTs (latest times) in the network below. *Don't forget any "dummy" activities which you entered above!*

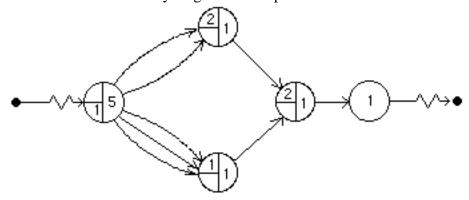
- 6. What are the critical activities? (Circle: **A B C D E F G H I J**)
- 7. What is the "total slack" or "total float" in activity G? _____
- 8. What is the expected completion time of the project? _____ the standard deviation of the project completion time? _____

- (VIII.) A system consists of five components (A,B,C,D, &E). The reliability (i.e., survival probability) during the first year of operation is 80% for A, B, and C, and 90% for D and E. For each alternative of (a) through (e), indicate:
- the number of the reliability diagram below which represents the system.

• the computation of the 1-year reliability


Diagram Reliability

- a. The system can function if A, B, and C all function or if both D and E
 - b. The system requires all of A, B, & C, and at least one of D & E.
- c. The system requires at least one of A,B, &C, and at least one of D & E.
 - d. The system requires that D & E both function, and at least one of A, B, &C.


Reliabilities:

- 1. $(0.8)^3(0.9)^2$
- 2. $[1-(0.2)^3](0.9)^2$
- 5. $(0.8)^3[1-(0.1)^2]$
- 4. $1 (0.2)^3(0.8)^2$ 7. 1-[1- $(.1)^2$] [.8³]

- 3. $[1-(0.2)^3][1-(0.1)^2]$
- 6. $1 [1 (0.2)^3][1 (0.1)^2]$
- 9. None of the above

Which of the six reliability diagrams corresponds to the SLAM model below?

