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Abstract

This paper presents genetic algorithms for solving various reliability design

problems, which include series systems, series-parallel systems and complex (bridge)

systems.  The objective is to maximize the system reliability, while maintaining feasibility

with respect to three nonlinear constraints, namely, cost and weight constraints, and

constraints on the products of volume and weight.  In this paper, both integer reliability

problems (component reliabilities are given and redundancy allocation is to be decided) and

mixed-integer reliability problems (both component reliabilities and redundancy allocation

are to be decided simultaneously) are studied.  Numerical examples show that genetic

algorithms perform well for all the reliability problems considered in this paper.  In

particular, as reported, some solutions obtained by genetic algorithms are better than

previously best-known solutions.
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1.  Introduction

Highly reliable systems can reduce loss of money and time.  Typically, there are

two main approaches to enhancing the system reliability, namely, (1) increasing the

reliability of the elements constituting the system and/or (2) using redundant elements in

various subsystems in the system (Misra and Sharma [20]).  In the former approach, while

the system reliability can be improved, the required enhancement of the reliability may be

beyond what is attainable even though the most reliable of currently available elements are

used.  Using the latter approach, the system reliability can also be enhanced, but, at the

same time, the cost, weight, volume, etc. will increase as well.  According to these two

main approaches, two typical reliability design problems are often investigated, namely (1)

integer reliability problems (component reliabilities are given and redundancy allocation is

to be decided) and (2) mixed-integer reliability problems (both component reliabilities and

redundancy allocation are to be decided simultaneously).

For the integer reliability problems, we may classify the problems and the

approaches into two groups, namely

(a)  Maximization of the system reliability subject to linear constraints.  For example,

Federowicz and Mazumdar [6], and Misra and Sharma [20] (using geometric

programming); and Hiller and Lieberman [12] (using dynamic programming); and

Misra [19] (by using a heuristic method).

(b)  Maximization of the system reliability subject to nonlinear constraints.  For example,

Sharma and Venkateswaran [26], Luus [17], Nakagawa and Nakashima [22],

Aggarwal [1], Tillman et al. [28], Kuo et al. [16], Gopal et al. [9,10], Nakagawa and

Miyazaki [21], Kohda and Inoue [15], and Hikita et al. [11] (using heuristic

approaches); and Park [25] (by using a fuzzy approach).

One can observe that for linearly constrained integer reliability problems, heuristic

methods and geometric programming methods have often been proposed, while a fuzzy

approach has been proposed when the constraints are nonlinear.
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For the mixed-integer reliability problems, most efforts were devoted to

nonlinearly-constrained reliability-redundancy problems.  Misra et al. [20] and Nakashima

et al. [21] used Lagrange multiplier and dynamic programming, respectively, to solve

single-constrained reliability-redundancy problems; Hikita et al. [11], Kuo et al. [16], and

Xu et al [30] used a surrogate dual, Lagrange multipliers with branch-and-bound, and a

heuristic approach, respectively, to solve reliability-redundancy (mixed-integer) problems

with multiple nonlinear constraints.  However, most of these require derivatives for all

nonlinear constraint functions, and provide only a single unique solution, that is, the design

engineers are presented no other options among which to choose.

Recently, Genetic Algorithms (GAs), originally developed by Holland [13], have

been widely studied and applied to solve a variety of optimization problems, usually of a

combinatorial nature.  This class of algorithms, inspired by the principles of natural

selection and population genetics, simulates a population of individuals (potential solutions

to the problem at hand) which mate, produce offspring, occasionally mutate, and (by

means of "survival of the fittest") evolve into superior individuals.  Owing to numerous

reports of successful applications of these innovative algorithms, GAs have attracted more

recent attention than most other heuristic methods in various fields, including reliability

optimization problems.  For example, Coit and Smith [2-5], Gen [7], Ida et al. [14], and

Painton and Campbell [23,24] have used GAs to solve integer reliability problems and have

reported effective and efficient solutions.  For the mixed-integer reliability problems, on the

other hand, Yokota et al. [29] used GAs to solve a triply-constrained reliability-redundancy

problem in which four integer variables (for redundancy allocation) and four real variables

(for reliabilities of components) are to be determined simultaneously.  They reported that a

near optimal solution was found in few seconds of CPU time.  The above brief survey

reveals that most efforts in the use of GAs to solve reliability design problems have been

devoted to integer reliability problems, while the use of GAs to solve mixed-integer

reliability problems is rare.
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In this paper, nonlinearly constrained reliability problems for both integer reliability

problems (component reliabilities are given and redundancy allocation is to be decided) and

mixed-integer reliability problems (both the component reliabilities and redundancy

allocation are to be decided simultaneously) are studied.  For both integer reliability

problems and mixed-integer reliability problems, three typical types of reliability problems,

which includes series, series-parallel, and more complex (bridge) systems, are investigated

by GAs.  Numerical results show that GAs can solve these systems efficiently and

effectively.  Indeed, for the three typical studied systems, some solutions found by the

GAs are better than previously best-known solutions.

This paper is arranged as follows: in the next section the integer reliability problems

and mixed-integer reliability problems are briefly described; in Section 3 the general

concept of a GA is described; numerical examples of various reliability systems are solved

and discussed in Section 4.  Finally, a short conclusion is provided.

2.  Reliability Problems

Before introducing the problems, we list below several notations used in this paper.

m The number of subsystems in the system.

ni The number of components in subsystem i , 1 ≤ i ≤ m .

n ≡ (n1,n2 ,..., nm), the vector of the redundancy allocation for the system.

ri The reliability of each component in subsystem i , 1 ≤ i ≤ m .

r ≡ (r1,r2 ,..., rm) , the vector of the component reliabilities for the system.

qi = 1 − ri , the failure probability of each component in subsystem i , 1 ≤ i ≤ m .

Ri (ni) = 1 − qi
n i , the reliability of subsystem i , 1 ≤ i ≤ m .

Rs The system reliability.

gi The i th constraint function.

wi The weight of each component in subsystem i , 1 ≤ i ≤ m .

vi The volume of each component in subsystem i , 1 ≤ i ≤ m .
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ci The cost of each component in subsystem i , 1 ≤ i ≤ m .

V The upper limit on the sum of the subsystems’ products of volume and weight.

C The upper limit on the cost of the system.

W The upper limit on the weight of the system.

b The upper limit on the resource.

2.1  Integer Reliability Problems

For integer reliability problems, component reliabilities are already specified and

only redundancy allocation is to be decided.  To evaluate the performance of GAs, we

consider three typical types of redundancy reliability systems which have been solved

previously by other approaches.  The problem of maximizing the system reliability subject

to multiple nonlinear constraints can be stated as the following integer nonlinear

programming problem (P1):

(P1) max  Rs = f (n)

        s.t.   g(n) ≤ b

                ni ∈positive integer , 1 ≤ i ≤ m

(1)

(1) Series systems (Hikita et al. [11] and Xu et al. [30]).  There are m  subsystems with

subsystem i  consisting of ni  elements, 1 ≤ i ≤ m .  Such a system (with m = 5) is

shown in Figure 1, with reliability

Ri (ni)
i=1

m

∏  (2)

where the reliability of subsystem i  is Ri (ni) = 1− qi
n i .

Figure 1 goes here

(2) Series-parallel systems (Hikita et al. [11]).  A system of this type is shown in Figure 2,

with reliability

1 − 1− R1R2( ) 1− 1− 1 − R3( ) 1− R4( )( )R5( ) (3)

where the dependence of Ri  on ni  has been suppressed for convenience of notation.

Figure 2 goes here
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(3) Complex (bridge) systems (Hikita et al.[11]).  A typical example is shown in Figure 3,

with reliability
R1R2 + R3R4 + R1R4 R5 + R2 R3R5 − R1R2 R3R4 − R1R2R3R5

       − R1R2 R4 R5 − R1R3R4R5 − R2 R3 R4 R5 + 2R1R2 R3R4R5

(4)

Figure 3 goes here

It should be noted that the series-parallel and the bridge problems were considered

by Hikita et al. [11] as mixed-integer problems in which both element reliability ri  and

redundancy number ni  ( i =1,2,3, 4,5 ) are decision variables to be assigned values.

However, in order to compare the performance of their heuristic algorithms and GA, we

have here assumed that element reliability ri  has been fixed at the values which Hikita et al.

report as being selected by their heuristic method.  Our objective, then, is restricted to

finding the optimal redundancy allocation ni  for each element   i  so as to maximize the

system reliability.

Three nonlinear constraints which have been imposed upon the levels of

redundancy by Hikita et al. [11] and others will also be imposed in our evaluation of GA.

The first constraint, apparently introduced by Tillman et al. [27], restricts the sum of the

products of the subsystem weights and squares of volumes:

g1 = wivi
2

i =1

m

∑ ni
2 ≤ V  (5)

The second constraint restricts the total cost of the system:

g2 = αi
i =1

m

∑ −1000 ln ri( )βi ni + exp(ni 4)( ) ≤ C (6)

where the exponential term represents the cost of interconnecting parallel elements (The

parameters αi  and βi  for each element i  are assumed to be given).  The third and last

constraint restricts the total weight of the system:

g3 = wi
i=1

m

∑ ni exp(ni 4) ≤ W (7)

where the exponential factor adjusts for the weight of the hardware interconnecting the

parallel elements.  Additionally, of course, we impose the constraint

g4 :ni ∈ positive integers, 1 ≤ i ≤ m . (8)
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The three problems above, namely the optimization of the system reliability as given by (2),

(3), or (4), subject to constraints (5-8), will be designated P1a, P1b, and P1c, respectively,

and will be used in our evaluation of GA in Section 4.1.

2.2  Mixed-Integer Reliability Problems

In the mixed-integer reliability problems, both component reliabilities and

redundancy allocation are to be decided simultaneously.  The problem of maximizing the

system reliability subject to multiple nonlinear constraints can be expressed as the following

mixed-integer nonlinear programming problem (P2):
(P2) max  Rs = f (r,n)

        s.t.   g(r,n) ≤ b

                0 ≤ ri ≤ 1, ni ∈positive integer ,  1≤ i ≤ m

(9)

In order to permit comparison with approaches proposed previously, the nonlinear

constraints used by Hikita et al. [11], Kuo et al. [16] and Xu et al. [30] are used in our

three example problems which include a series system, a series-parallel system and a

complex (bridge) system.  These three reliability-redundancy problems are formulated

below:

1. Series system (Figure 1, Hikita et al.[11]).  Problem (P2) becomes :

(P2a) max  f (r, n) = Ri (ni)
i=1

m

∏

s.t.   g1(r,n) = wivi
2

i=1

m

∑ ni
2 ≤ V (10)

g2 (r,n) = αi
i=1

m

∑ −1000 ln ri( )β i ni + exp(ni 4)( ) ≤ C (11)

g3 (r,n) = wi
i =1

m

∑ ni exp(ni 4) ≤ W (12)

0 ≤ ri ≤ 1, ni ∈positive integer ,  1≤ i ≤ m . (13)

2. Series-Parallel system (with m = 5, Figure 2, Hikita et al.[11]).  Problem (P2) becomes :

(P2b) max  f (r, n) =1 − 1 − R1R2( ) 1 − 1− 1 − R3( ) 1− R4( )( )R5( )
 s.t.   (10)-(13).
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3. Complex (bridge) system (with m = 5, Figure 3, Hikita et al.[11]).  Problem (P2) 

becomes :
(P2c)

 
max  f (r, n) = R1R2 + R3 R4 + R1R4 R5 + R2R3R5 − R1R2 R3 R4 − R1R2 R3R5

                     − R1R2 R4 R5 − R1R3R4R5 − R2 R3 R4 R5 + 2R1R2 R3R4R5

 s.t.   (10)-(13).

3.  Genetic Algorithms

GAs are efficient search methods based on principles of natural selection and

population genetics.  They use randomized operators operating on a population of candidate

solutions to generate a new population of candidates in the search space (Goldberg [8]).

For any GA, a chromosome representation is needed to describe each individual in the

population of interest.  Each individual or chromosome is made up of a sequence of genes

from a certain alphabet.  Though the alphabet was limited to binary digits in  Holland's

original design [13], other very useful problem-specific representations of an individual or

chromosome for function optimization have also been proposed.

GAs can search the solution space for optimal solutions very efficiently by using

evaluation and genetic operator functions to maintain the useful schema in the population.

For example, in a chromosome with a binary string representation of length eight, the

string 101#####, where the # represents a "wild card", either 0 or 1, is a schema.  Other

types of schema are possible also.  Individuals exhibiting a schema which results in higher

fitness will have a higher probability of survival by the selection process in each generation

and thereby will have a higher probability of being selected for mating and generating

offspring which are likely to exhibit the same schema.  (Mating is accomplished by the

crossover operator function, in which the pair of mating chromosomes exchange substrings

to produce a pair of offspring.)  The new offspring usually include improved solutions

since they tend to inherent the good schema, i.e., the good schema persist in the population

over multiple generations.  This has been discussed in detail by Michalewicz [18].  This
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section provides only a brief introduction of GAs; interested readers are referred to the

excellent book by Goldberg [8].

3.1  GA Representation for Integer Reliability Problems

For a chromosome we use a vector of m  integer numbers to represent the

redundancy of the m  subsystems.  For instance, the chromosome 23341 represents a

system with five subsystems, the first of which contains two elements, the second

subsystem three elements, etc.  The most interesting aspect of evolution (which includes

reproduction, crossover and mutation etc.) is that of natural selection, which can be

accomplished by the following steps:

Step 1. Randomly generate a population of chromosomes.

Step 2. Evaluate the fitness function for each individual in the population.

Step 3. If the stopping criteria have been achieved, then stop; else, go to the Step 4.

Step 4. Perform reproduction, crossover and mutation within the population.

Step 5. Form the new generation from the individuals resulting from Step 4.  Go to

Step 2.

A specified number of individuals in the initial population is randomly generated,

after deciding upon an upper limit    ci  on the number of elements in each subsystem   i .

(Such an upper limit can always be computed based upon the constraints, if no a priori

estimate is available.)  Typically, GAs evaluate individuals in the population by a so-called

"fitness function" which is a composite of both the objective value (in this case, system

reliability) and the penalty arising from the violation of constraints.  In this paper, the

fitness is defined as follows.

If one or more of the three constraints have been violated
Then Fitness=0
Else
Fitness=Objective value

End
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The genetic operators include crossover and mutation.  In Figure 4, the crossover

point was randomly selected and the offspring generated by swapping the partial strings of

parent 1 and parent 2.  In the mutation operation, each individual's chromosome is mutated

with a specified small, but positive, probability.  A gene within the string is randomly

selected to be mutated, and the selected gene's new value randomly selected within a range

from 1 to the upper limit for redundancy of elements in the associated subsystem.  For

example, in Figure 4 two parents (23241 and 31422) are selected, and the third gene of the

strings was selected for crossover, yielding the strings 32422 and 31241.  With a specified

probability, the resulting children are selected for mutation.  In this case, the third gene of

child 1 was selected to be mutated, and the new value, 1, was randomly generated for this

gene, yielding the string 23122.   That is, the number of the elements in the third

subsystem has been decreased from 4 to 1 by the mutation operation.

Figure 4 goes here

3.2  GA Representation for Mixed-Integer Reliability Problems

In our implementation, each mixed-integer solution will be represented by a string

of binary digits consisting of a substring for each subsystem.  Each substring in turn

consists of a binary substring representing the reliability of each component (real within

[0,1]) and a second binary substring representing the level of redundancy (positive

integer).  This chromosome is illustrated in Figure 5.

Figure 5 goes here

Implementing the three standard genetic operators, namely, reproduction, crossover

and mutation, requires the selection of the crossover point and mutation point for each

string.  If each gene has equal probability of selection, then the relative lengths of the

reliability and redundancy substrings determines whether the search should focus primarily

on the reliability or redundancy decisions.  We have used 16 binary digits for
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representation of the reliability and only 8 for the redundancy, in order to direct the search

primarily toward determining the component reliabilities.  (The desired degree of precision

for the real numbers (element reliabilities) should also guide our choice of substring

lengths, of course.)

The representation of a real number in our GA approach is the same as that

described by Michalewicz [18].  That is, the k  binary digits for ri  represent an integer ρi

within [0,2 k −1]  (where k  determines the precision of the variable ri ) and the

transformation ri = ρi (2 k −1) yields the component reliability within the interval [0,1].  A

similar procedure, followed by rounding to the nearest integer (denoted by the [•]

operation), yields the number of components in the subsystem, ni = 1+ vi

c −1

2k −1
 
 

 
 

 
  

 
  ,

within the interval [1,c ], where vi  is the integer (within [0,2 k −1]) specified by the binary

substring for ni .  The three standard genetic operators, namely, reproduction, crossover

and mutation are applied as described in Section 3.1.

4.  Numerical Results

4.1  Results of Integer Reliability Problems

To evaluate the performance of GAs for integer reliability problems, the data used

by Xu et al. [30], listed in Table 1, are used for the series system (P1a) and series-parallel

system (P1b), while the data used by Hikita et al. [11], listed in Table 2, are used for the

complex (bridge) system (P1c).  For these problems, only the redundancy allocation (ni )

of each element   i  is to be decided.
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Table 1.  Data used in series system (P1a) and series-parallel system(P1b).(Xu et al. [30]).

i ri(P1a) ri(P1b) 105α i wivi
2 wi V C W

1 0.77939 0.83819 2.330 1 7

2 0.87183 0.85507 1.450 2 8

3 0.90288 0.87886 0.541 3 8 110 175 200

4 0.71139 0.91140 8.050 4 6

5 0.78779 0.85036 1.950 2 9

 βi =1.5, i =1,2,3, 4,5 , m = 5.

Table 2.  Data used in complex systems (P1c) (Hikita et al. [11]).

i ri(P1c) 105α i wivi
2 wi V C W

1 0.79131 2.330 1 7

2 0.81513 1.450 2 8

3 0.90967 0.541 3 8 110 175 200

4 0.72061 8.050 4 6

5 0.81942 1.950 2 9

 βi =1.5, i =1,2,3, 4,5 .

Our GAs are coded in MATLAB® on an HP 715/75 workstation.  The GA

parameters which we have used for all three problems are as follows: the crossover

probability is fixed to 0.65; the mutation probability is chosen to 0.03; the population size

is set to 100; and the number of generations is fixed to 50.  The comparison of solutions by

GAs and best-known solutions are listed in Table 3.  (The "slacks" given in the table are

the unused resources in the constraints.)
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Table 3. Comparison of results of GA with best-known solutions.

Problem GAs Slacks* of (5)-(7) Best-known Slacks* of (5)-(7)

P1a n = (3,2,2,3,3)

Rs = 0.93168
(27, 0.014, 7.519)

n = (3,2,2,3,3)

Rs = 0.93168
(27, 0.014, 7.519)

P1b n = (2,2,2,2,4)

Rs = 0.999971
(40, 5.195, 1.609) n = (3,3,1,2,3)

Rs = 0.999969
(53, 0.000, 7.111)

P1c

n = (3,3,3,3,1)

Rs = 0.99982
n = (2,3,3,3,2)

Rs = 0.99980

(18, 0.969, 4.265)

(17, 1.054, 7.519)

n = (3,3, 2,3,2)

Rs = 0.99978
(27,0.124,10.573)

We see from Table 3 that for the series system (P1a), the best solution obtained by

GA (which appeared in 35 of the 50 generations) is n = (3,2,2,3,3)  with system reliability

= 0.93168.  This coincides with the best-known solution reported by Xu et al. [30].  It is

conjectured that this solution is optimal for this problem.  Furthermore, in comparison with

the previously best-known solutions of the series-parallel system (P1b) and the bridge

system (P1c), reported by Hikita et al. [11], our GA has identified a better solution for the

series-parallel system (P1b) and two better solutions for the complex system (P1c).  It

should also be noted that the CPU time of each problem for GA is about 25.6-28.7 seconds

which is very competitive with other heuristic methods.

4.2  Results of Mixed-Integer Reliability Problems

To evaluate the performance of our GA for mixed-integer reliability problems, the

three typical reliability-redundancy systems presented in Section 2.2 are optimized.  The

parameters for these problems duplicate those in Kuo et al. [16], Xu et al. [30] and Hikita

et al. [11], as shown in Table 4 and Table 5.  It should be reiterated that, for this class of

problems, both the component reliability (ri ) and the redundancy allocation (ni ) are to be

decided simultaneously for each subsystem   i .
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Table 4.  Data used in series system (P2a) and complex system (P2c) (Hikita et al. [11]).

i 105α i wivi
2 wi V C W

1 2.330 1 7

2 1.450 2 8

3 0.541 3 8 110 175 200

4 8.050 4 6

5 1.950 2 9

 βi =1.5, i =1,2,3, 4,5 , m = 5.

Table 5.  Data used in series-parallel system (P2b) (Hikita et al. [11]).

i 105α i wivi
2 wi V C W

1 2.500 2 3.5

2 1.450 4 4.0

3 0.541 5 4.0 180 175 100

4 0.541 8 3.5

5 2.100 4 4.5

 βi =1.5, i =1,2,3, 4,5 , m = 5.

Our GA for mixed-integer reliability problems is also implemented in MATLAB®

on the HP 715/75 workstation and has used the following parameters: population

size=200, mutation rate=0.85, crossover rate=0.03, and number of generations=500 for

series problem but 100 for both series parallel and complex (bridge) problems.  The

numerical results are shown in Tables 6 through 8, in which the best three solutions of each

problem are reported and compared with solutions reported previously.

Table 6 indicates that although the solutions of the series problem found by our GA

are not better than the solution found by Xu et al. [30], all three are better than those found

by Hikita et al. [11] and Kuo et al. [16].  Table 7 shows that each of the top three solutions

of the series-parallel problem found by the GA is better than that reported by Hikita et al.

[11]. Table 8 reports that the top three solutions of the bridge problem are all better than the

solution reported by Hikita et al. [11].  In both the series-parallel and bridge problems, the

solutions found by the GA vary significantly in the component reliabilities for subsystems.
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This offers the design engineer a variety of options from which to choose with negligible

differences in the system reliability.

Table 6.  The comparison of best-3 solutions of GAs with others for series system (P2a).

Best-3 solutions of GAs Hikita et al.[11] Kuo et al.[16] Xu et al.[30]

n (3,2,2,3,3) (3,2,2,3,3) (3,2,2,3,3) (3,2,2,3,3) (3,3,2,3,2) (3,2,2,3,3)

r

0.779427
0.869482
0.902674
0.714038
0.786896

0.773724
0.871969
0.906706
0.712657
0.784890

0.786442
0.869280
0.902171
0.712978
0.782296

0.777143
0.867514
0.896696
0.717739
0.793889

0.77960
0.80065
0.90227
0.71044
0.85947

0.77939
0.87183
0.90288
0.71139
0.78779

Rs
0.931578 0.931521 0.931517 0.931363 0.92975 0.93167

Slacks*

(10)-(12)

27
0.121454
7.518918

27
0.087235
7.518918

27
0.040719
7.518918

27
0.000000
7.518918

27
0.000010
10.57248

27
0.013773
7.518918

*Slacks: the unused resources

Table 7.  The comparison of solutions for series-parallel system (P2b).

Best-3 solutions of GAs Hikita et al. [11]

n (2,2,2,2,4) (2,2,2,2,4) (2,2,2,2,4) (3,3,1,2,3)

r

0.785452
0.842998
0.885333
0.917958
0.870318

0.812575
0.823845
0.900929
0.866317
0.875843

0.778750
0.841456
0.855949
0.921236
0.874585

0.838193
0.855065
0.878859
0.911402
0.850355

Rs 0.99997418 0.99997313 0.99997260 0.99996875

Slacks* of

(10)-(12)

40
1.194440
1.609289

40
2.441024
1.609289

40
0.916959
1.609289

53
0.000000
7.110849

*Slacks: the unused resources
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Table 8.  The comparison of solutions for complex (bridge) system (P2c).

Best-3 solutions of GAs Hikita et al. [11]

n (3,3,3,3,1) (3,3,3,3,1) (3,3,3,3,1) (3,3,2,3,2)

r

0.814090
0.864614
0.890291
0.701190
0.734731

0.758352
0.825402
0.881419
0.761758
0.751618

0.801863
0.856535
0.791371
0.747173
0.726372

0.814483
0.821383
0.896151
0.713091
0.814091

Rs 0.99987916 0.99985529 0.99984050 0.99978937

Slacks* of

(10)-(12)

18
0.376347
4.264770

18
0.656451
4.264770

18
1.854075
4.264770

27
0.000000
10.572475

*Slacks: the unused resources

5.  Conclusions

This paper considers three typical types of reliability problems, which include the

series system, the series-parallel system, and the complex (bridge) system.  The objective

of these problems is to maximize the system reliability subject to various nonlinear

constraints.  Unlike most well-known heuristic methods, GAs are able to solve both integer

reliability problems and mixed-integer reliability problems.  Furthermore, their applicability

is not limited to series-parallel systems.  As shown in the previous section, the optimal

solutions (except for problem P2a) by GAs are all superior to or tie the best solutions by

other well-known heuristic methods for both integer reliability problems (in which

component reliabilities are given and redundancy allocation is to be decided) and mixed-

integer reliability problems (in which both the component reliabilities and redundancy

allocation are to be decided simultaneously).  In agreement with the success of numerous

applications of GAs in various other classes of problems, our limited experience with these

reliability problems has shown that GAs are very competitive with other heuristic methods.

They are especially appropriate for design of nonstandard series-parallel  systems.   In

addition, as reported in this paper, the multiple solutions found by the GA sometimes vary

significantly in the component reliabilities and/or redundancy allocation for systems.  This
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offers the design engineer a variety of options from which to choose with negligible

differences in the system reliability.
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Figure 1.  The series system.
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Figure 2.  The series-parallel system.
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Figure 3.  The complex (bridge) system.
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Figure 4. Crossover and Mutation for GAs.
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Figure 5. The solution representation of mixed-integer problem.
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