
 57:022 Principles of Design II Homework \#10 - Due Friday, 3 May 2002

\& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

1. Bectol, Inc. is building a dam. A total of $10,000,000 \mathrm{cu} \mathrm{ft}$ of dirt is needed to construct the dam. The dirt is moved via dumpers to the dam site. Only one loader is available, and it rents for $\$ 100$ per hour. Bectol can rent, at $\$ 40$ per hour, as many dumpers as desired. Each dumper can hold 1000 cu ft of dirt. It takes an average of ten minutes to load a dumper with dirt, and it takes each dumper an average of ten minutes to deliver the dirt to the dam and return to the loader. Making appropriate assumptions about exponentiality so as to obtain a birth/death model, we wish to determine the optimal number of dumpers and the minimum total expected cost (rental of loader plus dumpers) of moving the dirt needed to build the dam.
a. How many loads are required to deliver all the dirt?
b. If the loader were to have 100% utilization, i.e., if there were always a dumper available at the dump site, how many hours would be required to complete the job?

As the number of dumpers is increased, the utilization of the loader will increase (and the time required to complete the job will decrease), so that the cost will decrease. Making appropriate assumptions about exponentiality so as to obtain a birth/death model, we wish to determine the optimal number of dumpers and the minimum total expected cost (rental of loader plus dumpers) of moving the dirt needed to build the dam.
Evaluate the cases of one, two, and three dumpers. For each case:
c. Draw a birth-death model of the system.
d. What is the classification of the system? M/M/_? /? /?
e. What is the steady-state distribution?
f . What is the utilization of the loader?
h. How many hours are required to complete the job?
i. What is the total rental cost?

Case	Utilization of loader	Time to complete job	Cost of renting loader	Cost of renting dumpers	Total cost
One dumper					
Two dumpers					
Three dumpers					

Of the three cases you have evaluated, which is the lowest cost alternative? \qquad
2. Consider a system with three service facilities, and six available servers. Each facility must be assigned one or more servers. Assume unlimited queue capacity at each facility.

Each server has a service rate of 8/minute. The exogenous arrival rates and routing probabilities of jobs shown below:

Jobs arrive at a facility from outside at the rates shown, and after being served at that facility, may be routed to another facility for additional service, according to the probabiliities shown.

We want to assign the six servers to the facilities so as to achieve the smallest average time in the system.
a. Use the RAQS (Rapid Analysis of Queueing Systems) software to evaluate at least three cases and record the results below.
\# servers assigned to

Case	Facilit y A	Facility B	Facility C	Average \# in system	Average time in system
1					
2					
3					

b. Using your best solution, verify Little's Law for the system considered as a whole (for which the total arrival rate is $8 /$ minute).

