Optimal Sequences of Trialsfor Balancing Practice and Repetition Effects

Han-Suk Sohn, DennisL. Bricker, J. Richard Simon, and Yi-Chih Hsieh

The University of lowa

December 10, 1996

Correspondence should be directed to Prof. Dennis Bricker, Dept. of Industrial
Engineering, The University of lowa, lowa City, |A 52242; phone: (319-)335-5935;
FAX: (319-)335-5424; email: dennis-bricker @uiowa.edu

This paper isto appear in Behavior Research Methods, Instruments, & Computers, a
journal published by The Psychonomic Society.



Abstract
This paper describes procedures for generating trial sequences to balance out practice
effects and intertrial repetition effects in experiments consisting of repeated trias. Inthe
sequences presented, each stimulus appears an equal number of times, is preceded equally
often by itself and by each other stimulus and is distributed in a"balanced” manner
throughout the block of trials. Two criteriafor balance are employed. One criterion aims
to equalize the average position of each stimulus in the sequence. The second criterion
maintains, as much as possible, auniform interval between appearances of each stimulusin
the sequence. For each criterion, optimal or near-optimal sequences are presented for
experiments involving from three to nine different stimulus conditions. Suggestions are

included for extending (e.g., doubling or tripling) the length of the sequences.



A typical reaction time (RT) experiment consists of aseriesof trials. On each trid,
the subject selects and executes a response depending on the identity of the stimulus
presented. Typically, each stimulusis presented a number of times in some predetermined
or randomly generated sequence. The experimenter computes the mean or median RTsand
error rates for each of the different stimulus conditions to examine the effects of the
experimental treatment.

When subjects perform repeated trials on a speeded choice task, their RT on a
particular trial may be affected by severa factors other than the specific stimulus presented.
For example, performance may be affected by practice effects that emerge within ablock or
over several blocks of trials (Pashler & Baylis, 1991a; Woodworth, 1938). There may
also be an intertrial repetition effect where performance on agiven tria is affected by the
nature of the preceding trial (e.g., Bertelson, 1961; Pashler & Baylis, 1991b; Smith,1968;
Williams,1966). In addition, RT may be affected by the probability of stimulus occurrence
(e.g., Hinrichs & Craft, 1971).

In an attempt to control these possible sources of confounding within ablock of
trials, experimenters generally present each stimulus equally often in arandom sequence.
Emerson and Tobias recently presented a computer program for randomly generating
sequences of trias, such that each stimulus condition: 1) appears an equal number of
times, and 2) is preceded equally often by itself and by each of the other stimuli (Emerson
& Tobias, 1995). The number of possible sequences exhibiting these propertiesis, in
general, quite large; the algorithm of Emerson and Tobias produces sequences with equal -
probability sampling.

An alternative control strategy would be to employ sequences of trials which are
optimal in the sense that each stimulus condition, in addition to satisfying properties (1) and
(2) above, is as evenly distributed as possible throughout the block of trials. This paper

describes criteriafor optimality of these sequences and presents optimal sequences for



experiments involving from three to nine treatment conditions, with each preceded exactly
once by each other condition, including itself. We suggest that experimenters might
employ these sequencesto balance out irrelevant effects in experiments involving repeated
trials. The sequences presented here should also be useful to experimenters who wish to

systematically investigate the intertrial repetition effect.

Mathematical Statement of the Problem

The subsequence{i,j} must appear exactly once in the complete sequence. Denote
by G theposition of this pair in the sequence; i.e., Ojj =k if i appearsin the kth position,
followed by j in the (k+1)th position.

Denote by S the sum of the positions of i in the sequence; i.e.,

N
S=a G (1)
j=1
Consider the sum of these sums,
N\ )
aS=a a 0 (2
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Note that the set of al the numbers G;j is some permutation of 1, 2, ..., N2, and so their

sum isidentical to that of asimple arithmetic sequence and is easily computed:

NZN2 + 1)

N
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i=1
The average of thevaluesof S, i=1,2,...,N, istherefore

NANZ2 + 1) 2
(NN NIN® + 1 @

We may consider i to be "balanced" in the sequence if the sum of its positions, S,
isequal to this"target" value, t, or equivaently, if the deviation from the target,
di=Si-t (5)
iszero. Unfortunately, it is generally impossible to obtain a sequence satisfying our

restrictions which attains a perfect balance of all of theintegers 1, 2, ..., N. Itisnecessary



to introduce some additional concepts before discussing the criterion which we will useto
select the "best” sequence.

For each sequence O, defineits position cardinality vector k(O) = (ko, k1,
ko,.... ) by

— R ) N
kn=mU Caro{l.|d,|—n;—m (6)
where Card(X) isthecardinality of the set X; i.e., the number of elementsin the set.

This cardinality vector isagood indicator of the balance of distribution of the
integersin the sequence, wherek = (N,0,0,0,.... ) would indicate a perfect balance; i.e., a
sequence for which each position sum S (i=1,...,n) has zero deviation d; from the target t.

A vector a issaid to be lexicographically positive, denoted a f 0, if itsfirst
nonzero element is positive, and vector a is said to belexicographically greater than vector
b, denoted a f b, if thedifference a- b islexicographicaly positive. (We define
"lexicographically lessthan" accordingly; i.e., a f bU b f a)

Wewill also require the reversal operator r for avector, which we definein the
obviousway; i.e., for any vector a=(ag, a1, ap, ..., an), thereverse of thevector is
r(a)=(an, anp-1,---, a1, ag) . Thecriterion which we propose for measuring the balance
of the sequence of integersis the position cardinality vector introduced above. Specificaly,
we wish to lexicographically minimize the reverse of the cardinality vector,

Lexomi nr(k(O) (7)
i.e., to find a sequence O* with cardinality vector k*=k (O*) such that, if O'is any other
feas ble sequence with cardinality vector k' =k (O"), then r (k*) f r(k'). Note that applying

this criterion not only minimizes max|di|, the maximum of the absolute deviations for the
|

integers, aswell as the number of integers exhibiting this maximum absol ute deviation.

Example
Consider the case N=3. The sequence (3-) 1-1-2-3-3-2-2-1-3 isafeasible

sequence; i.e., each of theintegers 1, 2, and 3 appear three times, and is preceded once by



each of the othersand itself. (In general, we require that the subject be presented the
preamble shown within parentheses, identical to the final integer of the sequence, namely
"3" inthisinstance, but the observation for that preliminary trial isto be discarded.) The

matrix O for this sequenceis
128
O= 763

9514
That is, the pair 1- 1 appearsfirst in the sequence 1- 1- 2- 3- 3- 2- 2- 1- 3, followed by the

pair 1- 2, while 1- 3 appearsin the eighth position, so that 1 appearsin thefirst, second,
and eighth position, 2 appears in the seventh, sixth, and third position, etc. The row sums
of the matrix O thereforeare $1=11, Sp=16, and S3=18, whilethetarget t , based upon
(4),is15. (Thisimpliesthat "1" and "3" are less balanced than "2"; i.e., $<t implies
that the appearances of "1" tend to be concentrated early in the sequence, while S3 > t
impliesthat the appearances of "3" tend to be concentrated late in the sequence.) Thus, the
deviations from the target are d1=-4, do=+1, and d3=+3, and the cardinality vector is k =
0,1,0,1,1,0,0, ...); i.e, there are no deviations of magnitude zero, one of magnitude
1, none of magnitude 2, etc.

Compare the above sequence with the (optimal) sequence (1- ) 1- 2- 3- 1- 3- 3- 2-

2- 1, for which the matrix O is
914
87 2
365

and $1=S3=14 and Sp=17. Thedeviationsfromt arenow dj=d3=-1 and do=+2 and the

O=

cardinality vector isk* = (0, 2, 1, 0, O, ....).
Comparing the latter cardinality vector with the former, we seethat r(k*) f r(k),

sincethe reversed differencer (k - k*) =(....,0,0,1, 1, -1, -1, 0) f 0,i.e., the
cardinality of the largest deviation for the first sequence (k4 =1) is greater than that of the

corresponding deviation of the second sequence, namely zero, so that the first nonzero

dement of r (k - k*) ispositive. For thisreason, we will consider the latter sequence to be

better balanced and hence superior to the former.



Optimally Balanced Sequences
The program iswritten in the APL*PLUS I language and is run on the HP-UX 715/75

workstation. While the number of distinct sequences of the integers 1 through N, each

(N2):

N( NI)

repeated N times, is , the number of such sequences which are feasibleis "only"

(NDN. It is easy to seethat the complexity of this problem precludes a complete
enumeration of the feasible sequences, and limits the size of the problems which can be
solved within a practicable amount of computation time. For example, the number of
feasible sequences when N=3 isonly 216, but for N=4, 5, and 6, this number grows
rapidly to 331776, 2.488x1010, and 1.39x1017, respectively. The program therefore
utilizes an implicit enumeration algorithm to severely restrict the number of sequences
which require evaluation. Even so, for N>6 the time required for the search was
excessive, and the search was terminated at 86,400 seconds so that the optimality of not al
given sequences can be guaranteed. Table 1 presents, for values of N ranging from 3to 9,
the best sequences found. The denotation N" denotes that the optimality of the sequenceis
guaranteed for N=3,4,5, and 6. To distinguish these sequences from other sequencesto be

introduced later, we shall refer to them as sequences of type A.

Table 2 indicates the balance of those sequences; namely, it reports the deviationsd

of the the average position of each condition from the target t.



Extending the Optimal Sequences

For small valuesof N, the experimenter may wish to construct alonger sequence
by repeating conditions more than N times. For example, when N is 3, the length of the
sequence reported in Table 1 isonly N2=9. How may the experimenter double or triple the
length of the sequence, for example, and still obtain a sequence with aquality as good as
or better than the given sequence? With thisgoal in mind, we state the following three
properties.

Property 1. Let O' =r (O) denote the sequence obtained by reversing sequence

O, with row sums S and deviations from thetarget d'j. Then

N N N
Si=a 0% =a (N*+1-0y)=NIN2+1)-§ Oy =2t -5
=1 =1 =1

' =S-t =(2-S)-t=-d
Property 2. Let O" = cat(O,0") denote the sequence obtained by concatenating
sequence O' to the end of sequence O, with row sums S*j and deviations from

thetarget d"j. Thetarget for the row sumsis now

2N? 2 2
_12NZ(2N2+1) s = NG ot

N 2

and

S'i=a (O +[N* 07) =S + S+ N3
j=1

=S -t =(S + S+ N3 - (2t +N3) = q +
Property 3. Letp denote apermutation of the set of integers{1, 2, ..., N},
which provides us a one-to-one mapping of the set onto itself, i.e., p = {p1,
p2, ..., pn}. Denote by O' = p(O) the sequence obtained by this mapping; i.e.,
O'pyp; = Gij- Then
Sv=Si and d'p =d



By means of these properties, we will be able to extend (e.g., double or triple) the length of
a sequence without degrading the quality of the sequence and usually improving the
quality.

Example

Consider again the case N=3 and the sequence (1- ) 1- 2- 3- 1- 3- 3- 2- 2- 1 with
d1=d3=-1and do=+2. (Recal that the"1" in parentheses indicates that the observation
for that initial trial isto bediscarded.) A valid sequence may always be obtained from any
sequence by repeating it, obtaining, inthiscase, (1- ) 1-2-3-1-3-3-2-2-1-1- 2- 3- 1-
3- 3-2- 2- 1. (Notethat thefinal “1” in the sequence serves as the preamble to the
repetition of the sequence.) Thus we have doubled the length of the sequence, but
according to property 2 we have a so doubled the deviations from the target, obtaining
d1=d3=-2and d' 2 =+4. For N=4, 5, and 6, however, the optimal sequences given in
Table 1 are perfectly balanced, so that repetitions of the optimal sequence in these cases are
also optimal.

When the initial condition and final condition of a sequence areidentical , to that
sequence we can always concatenate its reverse, obtaining for the case N=3 in Table 1, for
example, (1-) 1- 2- 3- 1- 3- 3-2- 2- 1- 1- 2- 2- 3- 3- 1- 3- 2- 1. Since, by property 1,
reversing a sequence also reverses the signs of the deviations d from the target t, and by
property 2, the deviations d" resulting from concatenation are the sums of the deviationsd
and d' of the concatenated sequences, the resulting sequence, O"=cat(O,0'), always has
d'i=0,i=1,2, ..,N,i.e,itisperfectly balanced, even if the original sequence was
not! Note that any reversible sequence (not necessarily perfectly balanced) could be used
for this doubling operation to yield a perfectly balanced sequence of length 2N2; such
reversible sequences will appear later in Tables 3 and 5.)

Once such adoubled sequence has been obtained, it can be repeated as often as

desired, so that one can obtain perfectly balanced sequences of any length which isan even



multiple of N2. If, on the other hand, one wishes a sequence with length an odd multiple
of N2, the sequence cat(O,r (0),...,0,r (0),0) has adeviation vector equal to the original
d. Inthis case, then, the extended sequence is no better balanced than the original, but

neither is the balance worse.

One may wish to preclude the negative effects of possible sequence learning by the
subject in the case of extended sequences of length greater than 2N2. Instead of
constructing an extended sequence by repeated concatenations of O and itsreverser (O),
equally well-balanced sequences might be obtained by a combination of a permutation of
the original sequence O and itsreverse. Consider the case N=3, for example, in which the
perfectly balanced doubled sequenceis(1-) 1- 2- 3- 1- 3- 3-2-2- 1- 1- 2- 2- 3- 3- 1- 3- 2-
1. If we perform any permutation of the stimuli excluding "1", we obtain another perfectly
balanced sequence. For example, let p=(1,3,2), so that p applied to cat(O,r (O)) yieldsthe
sequence(1-) 1- 2- 2- 3- 3- 2- 2- 1- 1- 3- 1- 2- 3- 3- 2- 1- 3- 1 which, when concatenated
to cat(Oyr (0)), yields a perfectly balanced sequence of length 4N2. By other proper
choices of permutations, perfectly-balanced sequences with length equal to any even
multiple of N2 can be obtained. (A sequence which has length an odd multiple of N2 can
be obtained by concatenating the origina O to a perfectly-balanced sequence whose

construction was just described.)

An Alternative Criterion

While the previous criterion may be appropriate for the planning of most
experiments, in some cases there may be aneed to maintain, as much as possible, a
uniform interval between appearances of each number in the sequence. The criterion
abovein (7) makes no attempt to do this, and may yield sequences in which, for example, a
number may appear in clusters at both ends of the sequence, thereby achieving a balance

relative to the center of the sequence.



Denoteby G; the size of gap j for each integer in the sequencei, i.e., the interval

between the jth presentation of i and the (j+1)t presentation of that samei, j=1, 2, x+, n-1,

where the first integer i in the sequence is considered to be preceded by the last. Thenwe
would like to increase the uniformity of G;;, or equivalently, to reduce the variability of G;
about its mean, which is always N.
For each sequence O, define the gap cardinality vector g(O) =(g, 1, &, - - -) by

& =m O Cad{(ij):|Gj - N =k, j=1,--n-1}=m,
i.e., g isthenumber of deviationsfrom the mean N of gaps or intervals between the
repetitions of each i which are of magnitude k, k3 0. Hence, we propose this gap
cardinality vector g(O) as ameasure of the non-uniformity of the sequence of integers,
whose reverse may accordingly be lexicographically minimized, i.e.,

Lexomin r(do) (8)
Optimizing this criterion will not only minimize max {k: g¢>0}, the maximum deviation of

gaps from the desired value N, but will further minimize the number of such gaps.

Example
Let us consider again the first feasible sequence presented above for N=3, namely,
(3- )1-1- 2- 3-3- 2- 2- 1- 3. Thevaluesof Gjs and|Gjs - N inthissequence are
16 2 3
31 ad 02|,
14 21
respectively. (For example, Gzp, i.e., the gap between the second and third presentation of
the number 3, which, ignoring the preamble, is presented in positions 4, 5, and 9 is 9-5=4,
which differs from the mean (namely, N=3) by |Gz, - N =4 - 3 =1.) Thecardinaity
vector of|Gjs - N| isg={ oo, 01,0, @, ...} ={1,1,3,1,0,...} since 0 and 1 appear once each,

2 appears three times, and 3 appears once.



Compare the above sequence with the optimal sequence for this criterion, namely,

(1- ) 1- 2-3-2-2-1- 3-3- 1. Thevaluesof the gapsG;; and the deviations‘Ga- -N|in

35 02
12 21,
114 21
respectively, so that the cardinality vector of ‘G,J -N‘ is o¢={m,0.0.®B, ..} =

this sequence are

and

{1,1,4,0,0,...}. The reverse of the gap cardinality vector of the former, namely r (g), is
(1,1,3,1,0,...) while that of the latter isr (gF)=(1,1,4,0,0,...). Since the leftmost nonzero
element of the differencer (g)-r (g*)=(...0,+1,-1,0,0) is positive, r (g) islexicographically
greater than r (g*) and therefore, based upon criterion (8), we would consider the second

sequence to be better than the first sequence.

Uniformly Distributed Sequences

Table 3 presents, for values of N ranging from 3t0 9, sequences selected based
upon the second criterion (8). These will be referred to as Type B sequences. N" in Table
3indicates that the optimality of the sequence is guaranteed. Otherwise, the search was
terminated at 86,400 seconds so that, as before, the optimality of the sequence cannot be
guaranteed. Table 4 indicatesthe quality of those sequences, namely, the gap cardindlity

vector of each sequence.

Extending the Uniformly Distributed Sequences
As discussed before, longer sequences than those given in Table 3 might be

required. The following propertieswill prove useful in extending the sequences:

10



Property 4. Let O' =r (O) denote the sequence obtained by reversing sequence
O. Thenthe gap cardinality vector of the reversed sequenceisidentica to the
original sequence, i.e.,, (O")=g(O).
Property 5. Letp denote a permutation of the set of integers{1, 2, ..., N},
which provides us a one-to-one mapping of the set onto itself, i.e., p ={p1,
p2, ..., Pn}. Denote by O' = p(O) the sequence obtained by this mapping; i.e.,
O'p,p = Gij. Then the gap cardinality vector is unchanged by this permutation,
i.e., o(0)=gO).
Properties 4 and 5 might lead one to expect that concatenating the reverse or some
permutation thereof might yield good extended sequences, an expectation which is shown
to be unwarranted because of the fact that concatenating two sequences not only retains the
gaps in each sequence, but introduces additional gaps, namely, the gap between the final
appearance of anumber in the first sequence and itsfirst appearance in the next.) For the
purpose of generating sequences which when repeated continue to display a uniform
distribution of the stimuli, we extend the definition of the gap G;jj to include the case j=n by
letting Gj, denote the interval between the nth appearance of integer i and the (n+1)th
appearance when the sequence is repeated. We distinguish the new gap cardinality vector
which includes a count of these additional gapsby ¢ (suggesting the circularity of the
gaps). Denote by f I((O) the sequence obtained by rotation of each element of the sequence
O (inacircular sense) k positionsto the left. (Thus, if O represents the sequence (1-) 1-
2-3-2-2-1-3-3-1from Table 3, 1(O) isthesequence (1-) 2- 3-2-2-1-3-3-1- 1))
The new gap cardinality vector ¢® has the following three useful properties:
Property 6. Let O = p(O) be apermutation of sequence O. Then
P(0)=P(0), i.e, the gap cardinality vector ¢f is unchanged by this
permutation.

Property 7. ¢(0) = #{f“(0)), that iis, ¢ is uneffected by arotation.

11



Property 8. Let O = cat(O,0) denote the sequence obtained by repeating
sequence O. Then the gap cardinality vector of the extended sequenceis
P(0)=2¢(0O).

Table 5 displays sequences (henceforth referred to as Type C) which exhibit an even
distribution of integersin this new sense; Table 6 indicates the quality of each of these
sequences, namely, the cardinality vector of the gaps as determined in this circular sense.
(Note that each sequence shownin Table 5 isreversible.) These Type C sequences may be
extended by concatenating a sequence to itself, which yields a sequence with the same

uniformity of distribution of the integers as the original sequence.

Discussion

In this paper we have suggested two techniques for measuring the quality of
sequences of trials according to two criteria, namely the balance of trials within the
sequence, so as to avoid the influence of practice effects during the block of trials, and
uniformity of the spacing of thetrials to avoid inter-trial repetition effects. The degreeto
which one or the other criterion deserves serious consideration in an experimental design
depends upon the nature and purpose of the specific experiment, of course. For each
criterion we have presented optimal or near-optimal sequences, from which by various
transformations (e.g., reversal, rotations, and/or permutations, depending upon the
criterion) one may obtain other sequences having equal quality which might be used as
additional blocks of trials. Many experimenters may, of course, wish to give weight to
both criteria. Table 7 will be of interest to the experimenter who, having selected a
sequence from Tables 1 or 3 above according to his’her primary criterion, may wish to
know the quality of that sequence asjudged by the other criteria. When both criteriaare
deemed to be important, areferenceto Table 7 indicates the sacrifice one makesin

satisfying the secondary criterion based upon one's choice of a primary criterion. (Note
that Table 7 reports only max |di| and max {k: g.>0} rather than the respective cardinality
|

12



vectors; two sequences having the same value for max |di| , for example, are not necessarily
I

of equal quality asjudged by the first criterion, which aso considers the number of integers

in the sequence which exhibit this maximum absolute deviation.)
An alternative to selecting a sequence based upon one of the two criteriawhich we

have addressed is to randomly generate sequences of trials using, for example, the
algorithm of Emerson and Tobias (Emerson & Tobias, 1995) which samples from the vast
number of feasible sequences with equal probability. Table 8 reports, for each N=3, ...9,
the quality (based upon each criterion) of one thousand sequences randomly generated by
their code. The histograms shown in Figures 1 and 2 for the case N=5 are typical of those
for all valuesof N. Using either criterion, the expected quality of the random sequenceis

far worse than those presented in this paper.

Examination of Table 8 clearly indicates that for N>3, no randomly generated sequence
exhibited a quality with respect to the balance criterion which was equal to the
corresponding sequencein Table 1. A more detailed examination of the cardinality vectors
of the random sequences for N=3 (for which only 216 sequences are feasible so that each
sequence is expected approximately five times) showed (i) that an optimal Type A sequence
was generated 43 times, while an optimal Type B sequence was generated 137 times. For
N=4, in which case 331776 sequences are feasible, one optimal Type B sequence was

found among the thousand randomly generated sequences.
Availability

A listing of the APL code used in generating the sequences reported in this report

may be obtained by an e-mail request to the second author at dennis-bricker @uiowa.edu.

13



Additiona sequencesfor N>9 are available via the world-wide-web at

"http://www.icaen.uiowa.edu/~dbricker/sequences.html”.)
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Table 1. Sequences (A) Exhibiting a Balance of Integers

N Sequence

3| 12313 3221

4 | 12344 13324 22114 3

5 | 12345 43352 21551 14424 13253

6 | 12345 66554 33221 63146 41152 62442
51353 6

7 | 12345 67766 55443 32211 31747 36272
51575 24616 41426 3537

8 | 12345 67887 76655 44332 21131 42418
28385 81627 57374 68635 26172 51536
4847

9 | 12345 67899 88776 65544 33224 21131
91595 39352 92646 27471 73868 18485
79697 58283 61494 16372 5

N™ indicates optimality of the sequence is guaranteed.

16



Table 2. Deviationsd from Target t of the Sequences(A) in Table 1

Deviations d; =Sj -t

N 1 2 3 4 5 6 7 8 9
3 -1 2 -1

4 O 0 O O

5 O 0 O o O

6 0O 0 O O O O

7 o 0o o0 1 -1 0 O

811 -183 -14 12 0 14 15 12 -2

9

3 -18 -20 -3 -15 21 17 22 -7

17



Table 3. Sequences (B), Exhibiting Even Distribution of Integers

N Seqguence

3| 12322 1331

4| 12344 13243 31422 1

5| 12345 22143 54251 32441 55331

6 12345 61324 65316 64263 51433 62544
15522 1

7 12345 67132 46573 14263 51743 36254
15377 21644 75522 7661

8 12345 67813 24657 18362 54731 68275
38417 63526 48514 33744 28661 55887
7221

9 12345 67891 32465 79814 36259 71842
63519 47286 15392 74852 16958 22937
76441 73875 54996 68833 1

N™ indicates optimality of the sequences guaranteed.
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Table 4. The Gap Cardinality Vectors

The Optimal Gap Cardinality Vectors g

N D QA PP B U B % T *B
3 1 2 3

4 4 2 3 3

5 3 6 7 0 4

6 4 12 4 5 0 5

7 6 17 v 2 3 1 6

8 8 15 12 6 5 3 O

9 15 18 14 3 6 2 2

19



Table 5. Circular Sequences (Type C), Exhibiting Even Distribution of Integers

N Seqguence

3| 12231 3321

4| 12344 13224 3142 1

5 12345 13522 44153 32142 5 4

6 12345 61324 65143 66225 15 16335
52644 1

7 12344 55266 77315 46271 56 17536
14725 16332 24376 5741

8 12345 67813 24657 18362 47 68275
38417 63528 87422 158606 4 3 72614
8551

9 12345 67891 32465 79814 6 2 71842
63519 47286 15392 74852 69 58773
82295 54176 64499 68833

N™ indicates optimality of the sequences is guaranteed.
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Table6. The Optimal Circular Gap Cardinality Vectors g®

© 00 N o 0o b~ w|Z
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N O O O
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0O 10 1
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max {k: ¢£>0)

11

32

max {k: >0}
B

10
13
21

11
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Table 7. Comparison of Sequences for Each Criterion
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Table 8. Quality of Randomly Generated Sequences
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miax|di| max {k: g>0}
N Opt | Min Max Mean StdDev.| Opt | Min  Max  MeanStd Dev.
3 2 2 8 4.81 1.96 2 2 3 236 048
4 0 1 21 1186 4.08 3 3 7 447 130
5 0 3 43 2331 7.26 4 4 13 743 2.06
6 0 7 74 2813 1115 5 5 20 10.92 281
7 1 16 111 5990 16.73 6 7 27 1469 3.64
8 15 23 177 86.60 23.79 7 7 35 18.74 4.40
9 22 47 242 12310 32.04 8 12 44 23.76 5.65
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Figure 1. Frequencies of maximum absolute deviation d from balance for 1000

=5

randomly generated sequences with N
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Figure 2. Frequencies of maximum deviation |Gj;-N| of gaps for 1000
randomly generated sequences with N=5
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