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Abstract

This paper describes procedures for generating trial sequences to balance out practice

effects and intertrial repetition effects in experiments consisting of repeated trials.  In the

sequences presented, each stimulus appears an equal number of times, is preceded equally

often by itself and by each other stimulus and is distributed in a "balanced" manner

throughout the block of trials.  Two criteria for balance are employed.  One criterion aims

to equalize the average position of each stimulus in the sequence.  The second criterion

maintains, as much as possible, a uniform interval between appearances of each stimulus in

the sequence.  For each criterion, optimal or near-optimal sequences are presented for

experiments involving from three to nine different stimulus conditions.  Suggestions are

included for extending (e.g., doubling or tripling) the length of the sequences.



A typical reaction time (RT) experiment consists of a series of trials.  On each trial,

the subject selects and executes a response depending on the identity of the stimulus

presented.  Typically, each stimulus is presented a number of times in some predetermined

or randomly generated sequence.  The experimenter computes the mean or median RTs and

error rates for each of the different stimulus conditions to examine the effects of the

experimental treatment.

When subjects perform repeated trials on a speeded choice task, their RT on a

particular trial may be affected by several factors other than the specific stimulus presented.

For example, performance may be affected by practice effects that emerge within a block or

over several blocks of trials (Pashler & Baylis, 1991a; Woodworth, 1938).  There may

also be an intertrial repetition effect where performance on a given trial is affected by the

nature of the preceding trial (e.g., Bertelson, 1961; Pashler & Baylis, 1991b; Smith,1968;

Williams,1966).  In addition, RT may be affected by the probability of stimulus occurrence

(e.g., Hinrichs & Craft, 1971).

In an attempt to control these possible sources of confounding within a block of

trials, experimenters generally present each stimulus equally often in a random sequence.

Emerson and Tobias recently presented a computer program for randomly generating

sequences of trials, such that each stimulus condition:  1) appears an equal number of

times,  and 2) is preceded equally often by itself and by each of the other stimuli (Emerson

& Tobias, 1995).  The number of possible sequences exhibiting these properties is, in

general, quite large; the algorithm of Emerson and Tobias produces sequences with equal-

probability sampling.

An alternative control strategy would be to employ sequences of trials which are

optimal in the sense that each stimulus condition, in addition to satisfying properties (1) and

(2) above, is as evenly distributed as possible throughout the block of trials.  This paper

describes criteria for optimality of these sequences and presents optimal sequences for
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experiments involving from three to nine treatment conditions, with each preceded exactly

once by each other condition, including itself.  We suggest that experimenters might

employ these sequences to balance out irrelevant effects in experiments involving repeated

trials.  The sequences presented here should also be useful to experimenters who wish to

systematically investigate the intertrial repetition effect.

Mathematical Statement of the Problem

The subsequence {i,j} must appear exactly once  in the complete sequence.  Denote

by  Oij  the position of this pair in the sequence; i.e., Oij = k if i appears in the kth position,

followed by j in the (k+1)th position.

Denote by Si the sum of the positions of i in the sequence; i.e.,

Si = Oij∑
j=1

N

(1)

Consider the sum of these sums,

Si∑
i=1

N

 = Oij∑
j=1

N

∑
i=1

N

(2)

Note that the set of all the numbers Oij is some permutation of 1, 2, ..., N2, and so their

sum is identical to that of  a simple arithmetic sequence and is easily computed:

Si∑
i=1

N

  = 1 + 2 +  + N2 =  
N2 N2 + 1

2
(3)

The average of the values of Si, i=1,2,...,N, is therefore

τ = 
N2 N2 + 1

2 N  =  
N N2 + 1

2
(4)

We may consider i to be "balanced" in the sequence if the sum of its positions, Si,

is equal to this "target" value, τ, or equivalently, if the deviation from the target,

δi = Si - τ (5)

is zero.  Unfortunately, it is generally impossible to obtain a sequence satisfying our

restrictions which attains a perfect balance of all  of the integers 1, 2, ..., N.  It is necessary
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to introduce some additional concepts before discussing the criterion which we will use to

select the "best" sequence.

For each sequence O, define its  position  cardinality  vector  κ(Ο) = (κ0, κ1,

κ2,.... ) by

κn = m ⇔ Card i : δi  = n  = m (6)

where Card(X) is the cardinality  of the set X; i.e., the number of elements in the set.

This cardinality vector is a good indicator of the balance of distribution of the

integers in the sequence, where κ = (N,0,0,0,.... ) would indicate a perfect balance ; i.e., a

sequence for which each position sum Si (i=1,...,n) has zero deviation δi from the target τ.

 A vector α is said to be  lexicographically positive, denoted  α >
L
 0,  if its first

nonzero element is positive, and vector α is said to be lexicographically greater than  vector

β, denoted  α >
L
 β , if the difference α−β is lexicographically positive.   (We define

"lexicographically less than" accordingly; i.e., α <
L
 β ⇔ β >

L
 α)

We will also require the reversal operator ρ for a vector, which we define in the

obvious way; i.e., for any vector α=(α0, α1, α2, ..., αn), the reverse  of the vector is

ρ α  = αn, αn-1, , α1, α0  .  The criterion which we propose for measuring the balance

of the sequence of integers is the position cardinality vector introduced above.  Specifically,

we wish to lexicographically minimize  the reverse of the cardinality vector,

Lexmin
O

 ρ κ O (7)

i.e., to find a sequence O* with cardinality vector κ*=κ(O*)  such that, if O' is any other

feasible sequence with cardinality vector κ' =κ(O'), then ρ κ*  <
L
 ρ κ' .  Note that applying

this criterion not only minimizes max
i

 δi , the maximum of the absolute deviations for the

integers, as well as the number of integers exhibiting this maximum absolute deviation.

Example

Consider the case N=3.  The sequence  (3 - ) 1-1-2-3-3-2-2-1-3 is a feasible

sequence; i.e., each of the integers 1, 2, and 3 appear three times, and is preceded once by

3



each of the others and itself.  (In general, we require that the subject be presented the

preamble  shown within parentheses, identical to the final integer of the sequence, namely

"3" in this instance, but the observation for that preliminary trial is to be discarded.)  The

matrix O for this sequence is

O = 
1 2 8
7 6 3
9 5 4

That is, the pair 1−1 appears first in the sequence 1−1−2−3−3−2−2−1−3, followed by the

pair 1−2, while 1−3 appears in the eighth position,  so that 1 appears in the first, second,

and eighth position, 2 appears in the seventh, sixth, and third position, etc.  The row sums

of the matrix O therefore are S1=11, S2=16, and S3=18,  while the target  τ , based upon

(4), is 15.  (This implies that "1" and "3" are less balanced than "2"; i.e.,  S1< τ implies

that the appearances of "1" tend to be concentrated early in the sequence, while S3 > τ

implies that the appearances  of "3" tend to be concentrated late in the sequence.)  Thus, the

deviations from the target are δ1=-4, δ2=+1, and δ3=+3, and the cardinality vector is  κ =

(0, 1, 0, 1, 1, 0, 0, ....); i.e., there are no deviations of magnitude zero, one of magnitude

1, none of magnitude 2, etc.

Compare the above sequence with the (optimal) sequence (1− ) 1−2−3−1−3−3−2−

2−1, for which the matrix O is

O = 
9 1 4
8 7 2
3 6 5

and S1=S3=14 and S2=17.  The deviations from τ  are now  δ1=δ3=-1 and δ2=+2 and the

cardinality vector is κ∗ = (0, 2, 1, 0, 0, ....).

Comparing the latter cardinality vector with the former, we see that  ρ κ*  <
L
 ρ κ ,

since the reversed difference ρ(κ − κ*)  = (...., 0, 0, 1, 1, -1, -1, 0) >
L
 0, i.e., the

cardinality of the largest deviation for the first sequence (κ4 =1) is greater than that of the

corresponding deviation of the second sequence, namely zero, so that the first nonzero

element of ρ(κ − κ*) is positive.  For this reason, we will consider the latter sequence to be

better balanced and hence superior to the former.
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Optimally Balanced Sequences

The program is written in the APL*PLUS II language and is run on the HP-UX 715/75

workstation.  While the number of distinct sequences of the integers 1 through N, each

repeated N times, is 
N2 !

N  N!
 , the number of such sequences which are feasible is "only"

N! N.  It is easy to see that the complexity of this problem precludes a complete

enumeration of the feasible sequences, and limits the size of the problems which can be

solved within a practicable amount of computation time.  For example, the number of

feasible sequences when N=3 is only 216, but for N=4, 5, and 6,  this number grows

rapidly to 331776, 2.488x1010, and 1.39x1017, respectively.  The program therefore

utilizes an implicit enumeration algorithm to severely restrict the number of sequences

which require evaluation.  Even so, for N>6 the time required for the search was

excessive, and the search was terminated at 86,400 seconds so that the optimality of not all

given sequences can be guaranteed.  Table 1 presents, for values of N ranging from 3 to 9,

the best sequences found.  The denotation N* denotes that the optimality of the sequence is

guaranteed for N=3,4,5, and 6.  To distinguish these sequences from other sequences to be

introduced later, we shall refer to them as sequences of type A.

- - - - - - - - - - - - - - - -

Insert Table 1 about here

- - - - - - - - - - - - - - - -

Table 2 indicates the balance of those sequences;  namely, it reports the deviations δ

of the the average position of each condition from the target  τ.

- - - - - - - - - - - - - - - -

Insert Table 2 about here

- - - - - - - - - - - - - - - -
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Extending the Optimal Sequences

For small values of N,  the experimenter may wish to construct a longer sequence

by repeating conditions more than N times.  For example, when N is 3, the length of the

sequence reported in Table 1 is only N2=9.  How may the experimenter double or triple the

length of the sequence, for example,  and still obtain a sequence with a quality as good as

or better than the given sequence?  With this goal in mind, we state the following three

properties.

Property 1.  Let  O' = ρ(O) denote the sequence obtained by reversing sequence

O, with row sums S'i and deviations from the target  δ' i.  Then

S' i = O'ij∑
j=1

N

 = N2+1-Oij∑
j=1

N

 = N N2+1  - Oij∑
j=1

N

 = 2τ - Si

δ' i = S'i - τ  = 2τ - Si  - τ = - δi

Property  2.  Let  O" = cat(O,O') denote the sequence obtained by concatenating

sequence O' to the end of sequence O, with row sums S"i and deviations from

the target  δ"i.  The target for the row sums is now

τ" = 1
N

k∑
k=1

2N2

 = 1
N

 
2N2 2N2 + 1

2
 = 2N3 + N = N3 + 2τ

and

S"i = Oij  + N2+ O'ij∑
j=1

N

 = Si + S'i + N3 

δ"i = S"i - τ" = Si + S'i + N3  - 2τ + N3  = δi + δ' i

Property  3.    Let π denote a permutation of the set of integers {1, 2, ..., N},

which provides us a one-to-one mapping of the set onto itself, i.e., π = {π1,

π2, ..., πN}.  Denote by O' = π(O) the sequence obtained by this mapping; i.e.,

O'πi,πj = Oij .  Then

S'πi = Si  and  δ' πi = δi
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By means of these properties, we will be able to extend (e.g., double or triple) the length of

a sequence without degrading the quality of the sequence and usually improving the

quality.

Example

Consider again the case N=3 and the sequence  (1− ) 1−2−3−1−3−3−2−2−1 with

δ1= δ3= -1 and δ2= +2.  (Recall that the "1" in parentheses indicates that the observation

for that initial trial is to be discarded.)   A valid sequence may always be obtained from any

sequence by repeating it,  obtaining, in this case,  (1− ) 1−2−3−1−3−3−2−2−1−1−2−3−1−

3−3−2−2−1.  (Note that the final “1” in the sequence serves as the preamble to the

repetition of the sequence.) Thus we have doubled the length of the sequence, but

according to property 2 we have also doubled the deviations from the target, obtaining

δ' 1= δ' 3= -2 and δ' 2 =+4.  For N=4, 5, and 6, however, the optimal sequences given in

Table 1 are perfectly balanced, so that repetitions of the optimal sequence in these cases are

also optimal.

When the initial condition and final condition of a sequence are identical , to that

sequence we can always concatenate its reverse, obtaining for the case N=3 in Table 1, for

example, (1−) 1−2−3−1−3−3−2−2−1−1−2−2−3−3−1−3−2−1.  Since, by property 1,

reversing a sequence also reverses the signs of the deviations δ from the target τ, and by

property 2, the deviations δ" resulting from concatenation  are the sums of the deviations δ

and δ' of the concatenated sequences, the resulting sequence, O"=cat(O,O'), always has

δ"i = 0, i = 1, 2, ... , N, i.e., it is perfectly balanced, even if the original sequence was

not!  Note that any reversible sequence (not necessarily perfectly balanced) could be used

for this doubling operation to yield a perfectly balanced sequence of length 2N2; such

reversible sequences will appear later in Tables 3 and 5.)

Once such a doubled sequence has been obtained, it can be repeated as often as

desired, so that one can obtain perfectly balanced sequences of any length which is an even
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multiple of N2.  If, on the other hand, one wishes a sequence with length an odd multiple

of N2, the sequence cat(O,ρ(O),...,O,ρ(O),O) has a deviation vector equal to the original

δ.  In this case, then, the extended sequence is no better balanced than the original, but

neither is the balance worse.

One may wish to preclude the negative effects of possible sequence learning by the

subject in the case of extended sequences of length greater than 2N2.  Instead of

constructing an extended sequence by repeated concatenations of O and its reverse ρ(O),

equally well-balanced sequences might be obtained by a combination of a permutation of

the original sequence O and its reverse.  Consider the case N=3, for example, in which the

perfectly balanced doubled sequence is (1−) 1−2−3−1−3−3−2−2−1−1−2−2−3−3−1−3−2−

1.  If we perform any permutation of the stimuli excluding "1", we obtain another perfectly

balanced sequence.  For example, let π=(1,3,2), so that π applied to cat(O,ρ(O)) yields the

sequence (1−) 1−2−2−3−3−2−2−1−1−3−1−2−3−3−2−1−3−1 which, when concatenated

to cat(O,ρ(O)), yields a perfectly balanced sequence of length 4N2.  By other proper

choices of permutations, perfectly-balanced sequences with length equal to any even

multiple of N2 can be obtained.  (A sequence which has length an odd multiple of N2 can

be obtained by concatenating the original O to a perfectly-balanced sequence whose

construction was just described.)

An  Alternative Criterion

While the previous criterion may be appropriate for  the planning of most

experiments,  in some cases there may be a need to maintain, as much as possible, a

uniform interval between appearances of  each number in the sequence.  The criterion

above in (7) makes no attempt to do this, and may yield sequences in which, for example, a

number may appear in clusters at both ends of the sequence, thereby  achieving a balance

relative to the center of the sequence.
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Denote by Gij  the size of gap j for each integer in the sequence i, i.e., the interval

between the jth presentation of i and the (j+1)th presentation of that same i, j=1, 2,⋅⋅⋅ , n-1,

where the first integer i in the sequence is considered to be preceded by the last.  Then we

would like to increase the uniformity of Gij , or equivalently, to reduce the variability of Gij

about its mean, which is always N.

For each sequence O, define the gap cardinality vector  γ O  = γ0, γ1,γ2,  by

γk = m  ⇔ Card i,j  : Gij  - N = k, j=1, n-1  = m ,

i.e.,  γk is the number of deviations from the mean N  of gaps or intervals between the

repetitions of each i which are of magnitude  k, k≥0.  Hence, we propose this gap

cardinality vector  γ (O) as a measure of the non-uniformity of the sequence of integers,

whose reverse may accordingly be lexicographically minimized, i.e.,

Lexmin
O

 ρ γ O (8)

Optimizing this criterion will not only minimize max k: γk>0 , the maximum deviation of

gaps from the desired value N, but will further minimize the number of such gaps.

Example

Let us consider again the first feasible sequence presented above for N=3, namely,

(3− ) 1−1−2−3−3−2−2−1−3.  The values of  Gif  and Gif - N  in this sequence are
1 6
3 1
1 4

   and   
2 3
0 2
2 1

 ,

respectively.  (For example, G32, i.e., the gap between the second and third presentation of

the number 3, which, ignoring the preamble, is presented in positions 4, 5, and 9 is 9-5=4,

which differs from the mean (namely, N=3) by  G32  - N = 4 - 3 = 1.)  The cardinality

vector of Gif - N  is γ={γ0,γ1,γ2,γ3, ...} = {1,1,3,1,0,...} since 0 and 1 appear once each,

2 appears three times, and 3 appears once.
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Compare the above sequence with the optimal sequence for this criterion,  namely,

(1− ) 1−2−3−2−2−1−3−3−1.   The values of the gaps Gij
*  and the deviations Gij

*  - N in

this sequence are

 
3 5
1 2
1 4

  and  
0 2
2 1
2 1

 ,

respectively, so that the cardinality vector of Gij
*  - N is γ∗={γ0,γ1,γ2,γ3, ...} =

{1,1,4,0,0,...}.  The reverse of the gap cardinality vector of the former, namely ρ(γ),  is

(1,1,3,1,0,...) while that of the latter is ρ(γ*)=(1,1,4,0,0,...).  Since the leftmost nonzero

element of the difference ρ(γ)-ρ(γ*)= (...0,+1,-1,0,0)  is positive, ρ(γ) is lexicographically

greater than ρ(γ*) and therefore, based upon criterion (8), we would consider the second

sequence to be better than the first sequence.

Uniformly Distributed Sequences

Table 3 presents, for values of N ranging from 3 to 9,  sequences selected based

upon the second criterion (8).  These will be referred to as Type B sequences.  N* in Table

3 indicates that the optimality of the sequence is guaranteed.  Otherwise, the search was

terminated at 86,400 seconds so that, as before, the optimality of the sequence cannot be

guaranteed.  Table 4 indicates the quality of those sequences, namely, the gap cardinality

vector of each sequence.

- - - - - - - - - - - - - - - - - - - -

Insert Table 3 and 4 about here

- - - - - - - - - - - - - - - - - - - -

Extending the Uniformly Distributed Sequences

As discussed before, longer sequences than those given in Table 3 might be

required.  The following properties will prove useful in extending the sequences:
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Property 4.  Let  O' = ρ(O) denote the sequence obtained by reversing sequence

O.  Then the gap cardinality vector of the reversed sequence is identical to the

original sequence, i.e.,  γ(O')=γ(O).

Property 5.  Let π denote a permutation of the set of integers {1, 2, ..., N},

which provides us a one-to-one mapping of the set onto itself, i.e., π = {π1,

π2, ..., πN}.  Denote by O' = π(O) the sequence obtained by this mapping; i.e.,

O'πi,πj = Oij .  Then the gap cardinality vector is unchanged by this permutation,

i.e., γ(O')=γ(O).

Properties 4 and 5 might lead one to expect that concatenating the reverse or some

permutation thereof might yield good extended sequences, an expectation which is shown

to be unwarranted because of the fact that concatenating two sequences not only retains the

gaps in each sequence, but introduces additional gaps, namely, the gap between the final

appearance of a number in the first sequence and its first appearance in the next.)  For the

purpose of generating sequences which when repeated continue to display a uniform

distribution of the stimuli, we extend the definition of the gap Gij to include the case j=n by

letting Gin denote the interval between the nth appearance of integer i and the (n+1)th

appearance when the sequence is repeated.  We distinguish the new gap cardinality vector

which includes a count of these additional gaps by  γo (suggesting the circularity of the

gaps).  Denote by φk
(O) the sequence obtained by rotation of each element of the sequence

O (in a circular sense) k positions to the left.  (Thus, if O represents the sequence (1−) 1−

2−3−2−2−1−3−3−1 from Table 3, φ1
(O) is the sequence (1−) 2−3−2−2−1−3−3−1−1.)

The new gap cardinality vector γo has the following three useful properties:

Property 6.  Let  O' = π(O) be a permutation of sequence O.  Then

γο(O')=γο(O), i.e., the gap cardinality vector γo is unchanged by this

permutation.

Property 7.  γo O  = γo φk
(O) , that is, γo is uneffected by a rotation.
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Property 8.  Let  O' = cat(O,O) denote the sequence obtained by repeating

sequence O.  Then the gap cardinality vector of the extended sequence is

γο(O')=2γο(O).

Table 5 displays sequences (henceforth referred to as Type C) which exhibit an even

distribution of integers in this new sense; Table 6 indicates the quality of each of these

sequences, namely, the cardinality vector of the gaps as determined in this circular sense.

(Note that each sequence shown in Table 5 is reversible.)  These Type C sequences may be

extended by concatenating a sequence to itself, which yields a sequence with the same

uniformity of distribution of the integers as the original sequence.

Discussion

In this paper we have suggested two techniques for measuring the quality of

sequences of trials according to two criteria, namely the balance of trials within the

sequence, so as to avoid the influence of practice effects during the block of trials, and

uniformity of the spacing of the trials to avoid inter-trial repetition effects.  The degree to

which one or the other criterion deserves serious consideration in an experimental design

depends upon the nature and purpose of the specific experiment, of course.  For each

criterion we have presented optimal or near-optimal sequences, from which by various

transformations (e.g., reversal, rotations, and/or permutations, depending upon the

criterion) one may obtain other sequences having equal quality which might be used as

additional blocks of trials.  Many experimenters may, of course, wish to give weight to

both criteria.  Table 7 will be of interest to the experimenter who, having selected a

sequence from Tables 1 or 3 above according to his/her primary criterion, may wish to

know the quality of that sequence as judged by the other criteria.  When both criteria are

deemed to be important,  a reference to Table 7 indicates the sacrifice one makes in

satisfying the secondary criterion based upon one's choice of a primary criterion.  (Note

that Table 7 reports only max
i

 δi  and max k: γk>0  rather than the respective cardinality
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vectors; two sequences having the same value for max
i

 δi  , for example, are not necessarily

of equal quality as judged by the first criterion, which also considers the number of integers

in the sequence which exhibit this maximum absolute deviation.)
An alternative to selecting a sequence based upon one of the two criteria which we

have addressed is to randomly generate sequences of trials using, for example, the

algorithm of Emerson and Tobias (Emerson & Tobias, 1995) which samples from the vast

number of feasible sequences with equal probability.  Table 8 reports, for each N=3, ...9,

the quality (based upon each criterion) of one thousand sequences randomly generated by

their code.  The histograms shown in Figures 1 and 2 for the case N=5 are typical of those

for all values of N.  Using either criterion, the expected quality of the random sequence is

far worse than those presented in this paper.

- - - - - - - - - - - - - - - - - - - -

Insert Figures 1 and 2 about here

- - - - - - - - - - - - - - - - - - - -

Examination of Table 8 clearly indicates that for N>3,  no randomly generated sequence

exhibited a quality with respect to the balance criterion which was equal to the

corresponding sequence in  Table 1.  A more detailed examination of the cardinality vectors

of the random sequences for N=3 (for which only 216 sequences are feasible so that each

sequence is expected approximately five times) showed (i) that an optimal Type A sequence

was generated 43 times, while an optimal Type B sequence was generated 137 times.  For

N=4, in which case 331776 sequences are feasible, one optimal Type B sequence was

found among the thousand randomly generated sequences.

Availability

 A listing of the APL code used in generating the sequences reported in this report

may be obtained by an e-mail request  to the second author at  dennis-bricker@uiowa.edu.
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Additional sequences for N>9 are available via the world-wide-web at

"http://www.icaen.uiowa.edu/~dbricker/sequences.html".)
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Table 1. Sequences (A) Exhibiting a Balance of Integers

    N                                          Sequence                                                                                                 

3* 1 2 3 1 3 3 2 2 1

4* 1 2 3 4 4 1 3 3 2 4 2 2 1 1 4 3

5* 1 2 3 4 5 4 3 3 5 2 2 1 5 5 1 1 4 4 2 4 1 3 2 5 3

6* 1 2 3 4 5 6 6 5 5 4 3 3 2 2 1 6 3 1 4 6 4 1 1 5 2 6 2 4 4 2

5 1 3 5 3 6

7 1 2 3 4 5 6 7 7 6 6 5 5 4 4 3 3 2 2 1 1 3 1 7 4 7 3 6 2 7 2

5 1 5 7 5 2 4 6 1 6 4 1 4 2 6 3 5 3 7

8 1 2 3 4 5 6 7 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 3 1 4 2 4 1 8

2 8 3 8 5 8 1 6 2 7 5 7 3 7 4 6 8 6 3 5 2 6 1 7 2 5 1 5 3 6

4 8 4 7

9 1 2 3 4 5 6 7 8 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 4 2 1 1 3 1

9 1 5 9 5 3 9 3 5 2 9 2 6 4 6 2 7 4 7 1 7 3 8 6 8 1 8 4 8 5

7 9 6 9 7 5  8 2 8 3 6 1 4 9 4 1 6 3 7 2 5

N* indicates optimality of the sequence is guaranteed.
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Table 2. Deviations δ from Target τ of the Sequences (A) in Table 1

Deviations  δi  = Si - τ
    N            1         2         3         4         5         6         7         8         9           

3 -1 2 -1

4 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 1 -1 0 0

8 -13 -14 -12 0 14 15 12 -2

9 3 -18 -20 -3 -15 21 17 22 -7
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Table 3. Sequences (B), Exhibiting Even Distribution of Integers

    N                                                         Sequence                                                                                

3* 1  2  3  2  2 1  3  3  1

4* 1  2  3  4  4 1  3  2  4  3  3  1  4  2  2  1

5* 1  2  3  4  5 2  2  1  4  3  5  4  2  5  1  3  2  4  4  1  5  5  3  3  1

6 1  2  3  4  5 6  1  3  2  4  6  5  3  1  6  6  4  2  6  3  5  1  4  3  3  6  2  5  4  4

1  5  5  2  2 1

7 1  2  3  4  5 6  7  1  3  2  4  6  5  7  3  1  4  2  6  3  5  1  7  4  3  3  6  2  5  4

1  5  3  7  7 2  1  6  4  4  7  5  5  2  2  7  6  6  1

8 1  2  3  4  5 6  7  8  1  3  2  4  6  5  7  1  8  3  6  2  5  4  7  3  1  6  8  2  7  5

3  8  4  1  7 6  3  5  2  6  4  8  5  1  4  3  3  7  4  4  2  8  6  6  1  5  5  8  8  7

7  2  2  1

9 1  2  3  4  5 6  7  8  9  1  3  2  4  6  5  7  9  8 1  4  3  6  2  5  9  7  1  8  4  2

6  3  5  1  9 4  7  2  8  6  1  5  3  9  2  7  4  8  5  2  1  6  9  5  8  2  2  9  3  7

7  6  4  4  1 7  3  8  7  5  5  4  9  9  6  6  8  8  3  3  1

N* indicates optimality of the sequences guaranteed.
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Table 4. The Gap Cardinality Vectors

The Optimal Gap Cardinality Vectors  γ∗

    N           γ0       γ1       γ2       γ3       γ4       γ5       γ6       γ7       γ8           

3 1 2 3

4 4 2 3 3

5 3 6 7 0 4

6 4 12 4 5 0 5

7 6 17 7 2 3 1 6

8 8 15 12 6 5 3 0 7

9 15 18 14 3 6 2 2 4 8
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Table 5. Circular Sequences (Type C), Exhibiting Even Distribution of Integers

    N                                                         Sequence                                                                                

3* 1  2  2  3  1 3  3  2  1

4* 1  2  3  4  4 1  3  2  2  4 3  3  1  4  2 1

5 1  2  3  4  5 1  3  5  2  2 4  4  1  5  3 3  2  1  4  2 5  5  4  3  1

6 1  2  3  4  5 6  1  3  2  4 6  5  1  4  3 6  6  2  2  5 3  1  5  4  2 1  6  3  3  5

5  2  6  4  4 1

7 1  2  3  4  4 5  5  2  6  6 7  7  3  1  5 4  6  2  7  1 3  5  6  4  2 1  7  5  3  6

1  4  7  2  5 1  6  3  3  2 2  4  3  7  6 5  7  4  1

8 1  2  3  4  5 6  7  8  1  3 2  4  6  5  7 1  8  3  6  2 5  4  7  3  1 6  8  2  7  5

3  8  4  1  7 6  3  5  2  8 8  7  4  2  2 1  5  8  6  6 4  4  3  3  7 7  2  6  1  4

8  5  5  1

9 1  2  3  4  5 6  7  8  9  1 3  2  4  6  5 7  9  8  1  4 3  6  2  5  9 7  1  8  4  2

6  3  5  1  9 4  7  2  8  6 1  5  3  9  2 7  4  8  5  2 1  6  9  3  7 5  8  7  7  3

8  2  2  9  5 5  4  1  7  6 6  4  4  9  9 6  8  8  3  3 1

N* indicates optimality of the sequences is guaranteed.
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Table 6.   The Optimal Circular Gap Cardinality Vectors γο

    N         γ0
o       γ1

o
       γ2

o
       γ3

o
       γ4

o
     γ5

o
     γ6

o
     γ7

o
     γ8

o
     γ9

o
    γ10

o
    γ11

o
    γ12

o
           

3 1 3 4 1

4 3 4 3 6

5 2 5 10 3 5

6 7 10 3 4 6 6

7 7 15 7 5 4 0 11

8 12 17 10 6 3 5 0 10 1

9 17 17 18 4 4 2 2 1 10 1 2 3
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Table 7.  Comparison of Sequences for Each Criterion

max
i

 δi max k: γk>0 max k: γk
o>0  

Ν                 A           B           C           A           B           C           A           B           C

3 2 4 2 2 2 2 2 2 2

4 0 5 2 4 3 3 4 3 3

5 0 20 7 9 4 4 9 4 4

6 0 20 10 10 5 5 10 5 5

7 1 44 18 13 6 6 13 6 6

8 15 44 30 21 7 8 21 7 8

9 22 50 45 32 8 11 32 8 11
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Table 8.  Quality of Randomly Generated Sequences

max
i

 δi max k: γk>0

 N         Opt        Min       Max      Mean     Std Dev.       Opt        Min       Max         Mean  Std Dev.

3 2 2 8 4.81 1.96 2 2 3 2.36 0.48

4 0 1 21 11.86 4.08 3 3 7 4.47 1.30

5 0 3 43 23.31 7.26 4 4 13 7.43 2.06

6 0 7 74 28.13 11.15 5 5 20 10.92 2.81

7 1 16 111 59.90 16.73 6 7 27 14.69 3.64

8 15 23 177 86.60 23.79 7 7 35 18.74 4.40

9 22 47 242 123.10 32.04 8 12 44 23.76 5.65
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Figure 1.  Frequencies of maximum absolute deviation δ from balance for 1000

randomly generated sequences with N=5
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Figure 2.  Frequencies of maximum deviation |Gij-N| of gaps for 1000

randomly generated sequences with N=5
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