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A dual algorithm applied to a posynomial geometric programming problem generally

terminates with a dual feasible solution which is only approximately optimal.   The usual

methods for recovering the primal solution then yields solutions with corresponding slight

infeasibilities in the primal constraints.  This paper demonstrates a linear programming

problem for computation of a primal solution which is strictly feasible.
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1.  INTRODUCTION

The geometric programming dual problem offers several computational advantages

over the primal, most notably the fact that the objective (after a logarithmic transformation)

is separable, and the constraints are linear equalities.  This comes not without

computational obstacles, including the nondifferentiability of the objective function when

one or more dual variables are zero (e.g., when a primal constraint is inactive.)  These

obstacles and suggestions for overcoming them are discussed in a large body of literature1

and will not be discussed here.  Another difficulty inherent in dual algorithms is in the

recovery of a primal feasible solution.  This is sometimes true even if the exact dual

optimum has been found2.

2/21/97 page 1



More importantly, though, is the need to find a primal feasible (near-optimal) solution

when only a near-optimal dual solution has been found.  Such is the case if the dual

algorithm is terminated before it has converged to the optimum, the usual circumstance in

practice.  In this case, the corresponding primal solution found by commonly-used

procedures will either violate one or more of the inequality constraints or be non-optimal--

generally the former. The following describes a procedure for computing a primal feasible

solution, given estimates of the dual optimal solution.

2.  THE POSYNOMIAL GEOMETRIC PROGRAMMING PROBLEM

The primal geometric programming problem is to

Minimize y0(x) = c0t  xn
a0tn∏

n=1

N

∑
t=1

T0

(2.1)

subject to ym(x) = cmt xn
amtn∏

n=1

N

∑
t=1

Tm

 ≤ 1, m=1, M (2.2)

xn > 0, n=1, ...N

(Note that the primal variables are constrained to be strictly positive, so that the feasible

region is not, in general, closed.)  The dual problem is to

Maximize v(δ,λ) = cmtλm

δmt

δmt
∏
t=1

Tm

∏
m=0

M

(2.3)

or, equivalently (since the logarithm function is monotonically increasing),

Maximize ln v(δ,λ)= ln cmtλm

δmt
∑
t=1

Tm

∑
m=0

M
 δmt (2.4)

subject to         amtnδmt∑
t=1

Tm

∑
m=0

M

 = 0, n=1,  N (2.5)
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λm = δmt∑
t=1

Tm

, m=0, 1, M (2.6)

λ0  = 1
(2.7)

δmt ≥ 0, t=1, Tm, m=0, 1, M

Let T= ΣmTm and denote the N×T coefficient matrix of equations (2.5) by A.   Then x*

and (δ*,λ*) are the primal and dual optimal solutions, respectively, if and only if the

invariance conditions

δmt
*

 ym(x*) = λm
*

 cmt x*n
amtn∏

n=1

N

 , t=1, Tm, m=0, 1, M (2.8)

are satisfied.

If a dual solution (δ*,λ*) is known, then these relationships may perhaps be used

to compute a primal solution x*.  Note that, from these relationships, one may obtain a

system of equations linear in the logarithms of the optimal values of the primal variables

(where ym
* , for m>0, is ym(x*)=1 if λm≠0, and y0(x*) = d(δ*,λ*) for m=0):

amtn  ln xn∑
n=1

N

 = ln 
δmt

*
ym*

λm
*

cmt

 , t=1, Tm (2.9)

for m=0, 1, ...M such that λ*m ≠ 0.

Denote by A the transpose of the coefficient matrix of equations (2.9), i.e., the

submatrix of A  in which are deleted the columns for which the corresponding variable λm

is zero.  Equations (2.9) provide necessary, but not sufficient conditions for primal

optimality; if rank AT < N, then the optimal primal variables are not uniquely determined

by (2.9), requiring the solution of a subsidiary problem3.  In this new problem, all terms

determined by equation (2.8), i.e., terms in posynomial m for which λm≠0, are fixed and

at least one additional posynomial constraint is tightened:
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Minimize  x0

subject to      c0t  xn
a0tn∏

n=1

N

 ≤ δ0t
*

y0
* , t=1, T0 (2.10)

cmt xn
amtn∏

n=1

N

 ≤ δmt
*

λm
*

 , t=1, Tm  if λm
*

 ≠ 0, m=1, M
(2.11)

ym(x) = cmt xn
amtn∏

n=1

N

∑
t=1

Tm

 ≤ x0 , if λm
*

 = 0, m=1, M (2.12)

xn > 0, n=1, ...N

(If, after solution of this subsidiary problem, equations (2.9) again do not determine the

optimal primal variables, then still another subsidiary problem must be solved.)

An often more convenient method of recovering the primal solution when one has

available the optimal Lagrange multipliers u*n, n=1,... N, for the orthogonality constraints

in the GP dual problem (with the logarithm of (2.3) as the objective) is to use the

relationship3

xn* = exp un* ,  n = 1, ...N (2.13)

In the aforementioned situation where equations (2.9) fail to determine the primal solution,

however, the Lagrange multipliers are nonunique, and equation (2.13) also fails to

determine x*n.

Relationships (2.9) and (2.13) apply to the optimal   pair of primal-dual solutions.  If,

as is generally the case in practice, the algorithm for solving the GP dual is terminated

before an exact dual optimum is achieved, the use of equation (2.13) for computing xn  will

yield a nonoptimal primal solution, which generally violates to some degree one or more of

the primal inequality constraints, if any, while equations (2.9) will generally constitute an

overdetermined system of equations with no solution.   Of course, one might solve any M

linearly independent equations from (2.9), or find a least-squares-error solution to (2.9), in

order to find a primal solution, but such a solution will generally be neither optimal nor

feasible.  Depending upon the circumstances, and the degree of the infeasibility, the primal
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solution thus obtained may be acceptable.  For example, if the constraint coefficients are

only estimates, the constraint need not be considered a "hard" constraint, and small

infeasibilities may be of no consequence4.  In other circumstances, however, the constraint

may not permit any infeasibility, as might be the case in which the constraint embodies

some physical law.  In the section that follows, we introduce a subsidiary problem, similar

to (2.10-12), to ensure that xn  is truly feasible.

3. ENSURING PRIMAL CONSTRAINT FEASIBILITY

Suppose that  (δ, λ) is a feasible, near-optimal, solution to the geometric

programming dual problem.  For each positive δmt, define the ratio ρmt = δmt/ λm (where

λ0=1).  Note that , for each posynomial m for which  λm>0,

ρmt∑
t=1

Tm

 = 1 (3.1)

(The algorithm in Bricker and Rajgopal5 provides the ratios ρmt directly for all  terms, even

when the corresponding constraint is loose and λm=0.)

Then a solution to the following "subsidiary" problem will be primal feasible:

Minimize  x0 (3.2)

subject to  c0t  xn
a0tn∏

n=1

N

 ≤ ρ0tx0 , t=1, T0 (3.3)

cmt xn
amtn∏

n=1

N

 ≤ ρmt, t=1, Tm if λm≠0, m=1, M (3.4)

xn > 0, n=1, ...N

This is essentially a geometric programming problem, with each posynomial

consisting of a single term, and it is well-known6 that the constraints are linear under a

logarithmic transformation.  Letting un = ln xn , we obtain the linear programming problem

Minimize u0
(3.5)
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subject to     ln c0t  + a0tn un∑
n=1

N

 ≤ ln ρ0t  + u0,  t = 1, ...T0 (3.6)

 
ln cmt + amtn  un∑

n=1

N

 ≤ ln ρmt , t=1, Tm if λm≠0, m=1, M (3.7)

The dual of this LP problem is

Maximize ∑
m=0

M

ln cmt
ρmt

 δmt∑
t=1

Tm

(3.8)

subject to  δ0t∑
t=1

T0

 = 1 (3.9)

∑
m=0

M

amtnδmt∑
t=1

Tm

 = 0, n=1, N (3.10)

δmt≥0, t=1, Tm, m=0, 1, M

It is interesting to compare this LP with the GP dual problem and to note that the

constraints are identical, and that to each term

ln cmt
ρmt

 δmt , i.e., ln cmtλm

δmt

 δmt (3.11)

in the LP objective there corresponds the term

ln cmtλm

δmt

 δmt (3.12)

in the (logarithm) of the GP dual problem.  Thus we see that the LP problem above may be

considered a linearization of the GP dual problem.  To obtain a primal feasible (near-

optimal) solution to a GP problem, then, we may apply a dual algorithm to the problem,

obtaining a dual-feasible near-optimal solution (δ,λ), replace the dual objective terms

(3.12) with linear terms (3.11), optimally solve the resulting LP, and, finally, exponentiate

the optimal simplex multipliers.
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4.  EXAMPLE

Let us consider the following posynomial geometric programming problem of

Rijckaert and Martens2.

Minimize x1
-1

subject to x1x2
-1 + 0.5x3

-1 ≤ 1

0.01 x3x4
-1 +  0.01 x2 + 0.0005 x2 x4

-1  ≤ 1

xn>0, n=1,2,3,4

(Note that there is apparently a typographical error in the source cited above.)  The dual of

this problem is to

Maximize  ln λ0

δ01

 δ01  + ln λ1

δ11

 δ11  + ln 0.5λ1

δ12

 δ12  

   + ln 0.01λ2

δ21

 δ21  + ln 0.01λ2

δ22

 δ22  + ln 0.0005λ2

δ23

 δ23

subject to

- δ01 + δ11 = 0

- δ11 + δ22 + δ23 = 0

- δ12 + δ21 = 0

- δ21 - δ23 = 0

δ01 = 1

δ11 + δ12 = λ1

δ21 + δ22 + δ23 = λ2

λm≥0 and δmt≥0, for all m and t

(The primal solution given is not feasible2, violating the constraints by the quantities

0.002548762 and 0.000003288, respectively.)  Suppose that we have solved this problem,

using a dual algorithm, e.g. that of Bricker and Rajgopal5, specifying a stopping tolerance
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of 10-3 (i.e., the maximum relative objective gap and constraint violation) and have

obtained the dual feasible solution  ρ01=1, ρ11= δ11/λ1 = 0.943320, ρ12= δ12/λ1 =

0.056680, ρ21= δ21/λ2 = 0.058948, ρ22= δ22/λ2 =0.875606, ρ23= δ23/λ2 = 0.065446,

λ1= λ2= 1.066262, with objective value (ln 0.012093786).  (Because the termination

criterion of the algorithm uses a positive tolerance, this is not in fact optimal, but only

nearly so.)

Using (2.13) with the Lagrange multipliers for the orthogonality constraints (2.6),

we obtain the primal solution x1=82.68709, x2=87.58691, x3=8.81448, x4=1.49486,

having the same primal objective value, but for which the two primal constraints are

violated by the quantities 0.00078246 and 0.00029945, respectively.   Instead, to obtain a

primal solution which is feasible, we replace the nonlinear term

ln cmtλm

δmt

 δmt

by the linear term

ln cmt
ρmt

 δmt

in the objective function of the dual problem.  For example, the first term

ln λ1

δ11

 δ11

is replaced by the linear term

ln 1
0.943320

 δ11  = 0.0583497 δ11

In this way, we obtain the LP problem with the objective

Maximize 0.0583497δ11 + 2.87033δ12

- 1.77407δ21 - 4.47233δ22 - 4.87437δ23

and the constraints of the dual GP problem above.  Using (2.13) with the optimal simplex

multipliers of this LP, we obtain the primal GP solution x1=82.50842, x2=87.46604,
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x3=8.82138, x4=1.49648, for which the objective is 1/x1 = 0.0121998 and primal

constraint functions y1(x)=1 and y2(x)=  0.999053.  That is, we have a feasible primal

solution, for which the objective function is guaranteed to be within (0.012119975-

0.012093786)/0.012093786= 0.21656% of the optimal cost.

5.  COMPUTATIONAL EXPERIANCE

 To further illustrate the results obtained by the procedure proposed above, we have

selected five problems from the literature, with characteristics displayed in Table 1.

Problems RM1, RM2, RM3, and RM5 appear in the collection compiled by Rijckaert and

Martens2, while B&E1 appears in the collection compiled by Beck and Ecker7.

Table 1 :    Problem   Characteristics

Problem Charecteristics

No. of
variables

No. of
constraints

Total no.
of terms

Optimal value
(tol=1.0E-10)

No. of tight
constraints

RM 1 4 2 6 0.0121031862 2

RM 2 3 1 9 6299.8424 1

RM 3 4 1 12 126303.1780 1

  B&E1 3 2 6 11.77813352 1

RM 5 4 3 8 623249.8761 3

The algorithm used to solve the GP dual problems is that of Bricker and Rajgopal5,

which is comparable to the GGP algorithm of Dembo8, both yield dual feasible solutions

and employ as a stopping criterion the maximum permissible primal constraint

infeasibilities and objective gap.
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For each of these five problems, and each of four tolerances (ranging from 10-1 to

10-4), we performed the following computations:

i.  "solution" of the geometric programming dual problem with the given

tolerances employed in the stopping criterion, obtaining four feasible near-

optimal dual solutions,

ii. exponentiation of the Lagrange multipliers of the orthogonality constraints as in

equation (2.13) to obtain a near-feasible primal solution,

iii. use of the dual "solution" to form a linear approximation (3.8) to the dual

objective,

iv. solution of the linear program (3.8)-(3.10) with this linear objective and the

dual GP linear constraints,

v.  exponentiation of the simplex multipliers of the orthogonality constraints

(3.10) as in (2.13) to obtain a primal feasible near-optimal solution, and

vi.  computation of the relative gap between the primal objective evaluated at the

infeasible solution found in step (ii.) and those in step (v.).

Table 2 displays the following results for each of these twenty cases:

•  the primal objective value evaluated at the primal infeasible solution found in

step (ii) above

•  the primal objective value evaluated at the primal feasible solution found in

step (v) above

•  the "gap" between the previous two values, expressed as a fraction of the

former, i.e., the "degradation" of the objective function which resulted

when primal feasibility was enforced

•  the number of primal constraints violated by the solution found in step (ii)

above

•  the sum of the violations of the primal constraints by the solution found in

step (ii) above
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Table  2: Computational Results

Problem
Stopping

tolerance

Objective

value at

termination

No. of

infeasible

constraints

Sum of

infeasi-

bilities

Objective

value of

feasible

solution

Gap

(%)

10-1 0.0115639242 2 0.060223266 0.0130195647 11.1804

RM1 10-2 0.0119342099 2 0.013750256 0.0122657862 2.7033

10-3 0.0120937860 2 0.001081912 0.0121199750 0.2166

10-4 0.0121028663 2 0.000107195 0.0121054613 0.0214

10-1 6479.2910 1 0.05737484 6625.7211 2.2600

RM2 10-2 6309.8208 1 0.00403163 6318.3694 0.1355

10-3 6300.5979 1 0.00023193 6301.1223 0.0083

10-4 6299.7106 1 0.00005909 6299.8452 0.0021

10-1 126116.05 1 0.097989755 133365.77 5.7485

RM3 10-2 126281.45 1 0.009143721 126974.14 0.5485

10-3 126277.37 1 0.00843411 126341.81 0.0510

10-4 126300.38 1 0.000069778 126305.71 0.0042

10-1 11.781512 1 0.052043228 11.982448 1.7055

  B&E1 10-2 11.796952 1 0.003092963 11.809102 0.1030

10-3 11.779655 1 0.000771352 11.782683 0.0257

10-4 11.778348 1 0.000048173 11.778537 0.0016

10-1 566305.11 1 0.0819200 656133.37 15.8622

RM5 10-2 622678.40 1 0.0008108 623594.29 0.1471

10-3 622751.18 1 0.0005423 623362.14 0.0981

10-4 623294.33 1 0.0000453 623345.42 0.0082

6.  SUMMARY

For geometric programming problems where a dual algorithm has been used, the

termination criterion in general results in a dual feasible near-optimal solution.  The usual

methods for recovering the primal solution then produces slight infeasibilities in the primal
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constraints.  In many situations, these slight infeasibilities are tolerable.  When, however,

absolutely no primal feasibility can be tolerated, we have demonstrated how a primal

feasible solution can be obtained through solution of a linear programming problem whose

objective coefficients are determined by the dual near-optimal solution.
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