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Abstract: We consider a paradigm of linear optimization in the face of
uncertainty, in which (first-stage) decisions must be made before the uncertainty
is resolved, and then recourse (second-stage decisions) is available to
compensate. When a finite set of scenarios can be identified and their probability
estimated, and the objective is to minimize the sum of the first-stage cost and the
expected value of the second-stage cost, a (generally large) deterministic
equivalent LP problem can be constructed. Benders' (primal) decomposition
and Lagrangian (dual) decomposition each yields a family of smaller
subproblems, one for each scenario, and a coordinating "master" problem. Cross-
decomposition is a hybrid primal-dual iterative approach which eliminates the
master problems and uses the primal and dual subproblems to provide both
upper and lower bounds on the optimal expected cost at each iteration. A small
example illustrates the computation.
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EXAMPLE

+ A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting

season he wants to decide how much land to devote to each crop.

*

At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be

purchased from a wholesaler if not raised on the farm.

*

Any grain in excess of the cattle feed requirement can be sold at $170 and $150 per ton of

wheat and corn, respectively.

*

The wholesaler sells the grain for 40% more (namely $238 and $210 per ton,

respectively.)

*

Up to 6000 tons of sugar beets can be sold for $36 per ton; any additional amounts can be

sold for $10/ton.

DATA

Wheat Corn Sugar Beets

Average Yield 25T/Acre 3 T/Acre 20 T/Acre

Planting cost $150/ Acre  $230/Acre  $260/ Acre

Selling price $170/T $150/T $36/T first 6000T
$10/T otherwise

Purchase price $238/T $210/T

Minimum Rgmt ~ 200T 240T

DECISION VARIABLES

We distinguish between twao types of decisions:
First stage (before growing season):

x, = acres of land planted in wheat

x» = acres of land planted in corn

Xa = acres of land planted in beets
Second stage (after harvest):

wi = tons of wheat sold

w; = tons of corn sold

wa = tons o beets sold at $36/T

wy = tons of heets sold at $10/T

v1 = tons of wheat purchased

y2 = tons of corn purchased

LINEAR PROGRAMMING MODEL
Minimize 150x,+230x,+260x,+238 v, 170w +210v,~1501; —36u; —10w;,
subject to
X+ X+ X <500
2.5x, +y, —w, =200
3, +y,—w, =240
Wy + Wy, < 20x,
%, <6000
x,>0,i=123:y,>0,i=1,2;w, >0, i=1,2,34

OPTIMAL SGLUTION
Profit=$118,600
Wheat Corn Sugar Beets
Plant 120 Acres 80 Acres 300 Acres
Yield 300T 240T 6000T
Sales 100T - 6000T
Purchase | -- - -




In actuality, crop yields are uncertain, depending upon weather conditions
during the growing season.
Three scenarios have been identified

¢ "good" (20% higher than average)

¢ "fair" (average)

¢ "bad" (20% below average),

each equally likely:
Scenario
k
L Good 3 36 24
2. Fair 25 3 20
3. Bad 2 24 16

Scenario #1: "Good" Yicld: Optimal Profit = §$167,667

Wheat Corn Sugar Beets
Plant 183.333 Acres 66.67 Acres 250 Acres
Yield 550T 240T 6000T
Sales 350T - 6000T
Purchase |- - -

Scenario #3: "Rad" Yicld: Optimal Profit — $59.950

Wheat Corn Sugar Beets
Plant 100 Acres 25 Acres 375 Acres
Yield 200T 60T 6000T
Sales - - 6000T
Purchase | -- - -

If a perfect forecast was available, then, the expected profit would be

] 1 1 _
Ax$167,667+ Ax$118,600+ Axssg,gso =$115,406

The stochastic decision problem is to optimize the first-stage cost plus the expected
second-stage costs:

Minimizc 1505 +230x, + 260x,+ YY" 0, (x)
k=1

subject to x;, +x, +x, <500
x,>0,7=1,2,3

where

(03 (x) — second-stage costs in scenario k, if first-stage decisions x have been
implemented

@) (x) = Minimum 170w +150ms, + 36m:, + 10u:, — 238y, —210y,
sty —w 22003y,

, 2 240-3.6x,

w, < 24x,

31 20,,20.w, >0,w,>0, 0<w, <6000,w, >0

o ( r) = Minimum 170w, + 150w, + 36w, + 10w, — 238y, =210y,
s.ty, —w, =200-2.5x,
=W, 22403y,
wy +w, < 20x,
120,20 w, 20,w, >0, 0<w, <6000,uw, >0

2} (x) = Minimum 170w; +150ms, +36m: + 10u:, — 238y, —210y,
sty —w 2200-2x,
Vo —w, 2240-2 4x,
W, +w, <16x,
31 20,,20.w, >0,w,>0, 0<w, <6000,w, >0

TwO-STAGE LINEAR PROGRAMMING WITH RECOURSE

Minimize z = cx+ b‘[minq(a})y (a))]

subject to
Ax=b
T (o) x+Wy(0)=h(o),
x20, y((u) >0
where

x = first-stage decision
and

(o) = second-stage decision after random event @ is abserved
which must satisfy thc second-stage constraints

T{@)x+Wy(w)= ko),

where g(@), T(w) & h(w) arc random variablcs
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DETERMINISTIC EQUIVALENT PROBLEM
Assume a finite number of scenarios.

For cach scenario k, define a set of second-stage variables, y" ,and arrays T;, ¢, and /3,

The objective is to minimize the expected total costs of first and second stages

K
Minimize cx+ Y p, 0 (x)
k=l

subjectto xe X

where the cost of the second stage is

0, (x)=Minimum {q,y: Wy =h, —T.x, y 20}
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Consider the deferministic LP derived from the 2-stage stochastic LP:

K
Z=minex+ Y, g

k=1

subjeet to
Tx+Wy* —h k=1,..K;
xe X

¥ 20k=1..K

where the feasible set of first-stage decisions is defined by

X—{xe R”:Ax—h,x?(]}
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EXAMPTE:

Second stage decisions:

Tor each scenario k (k=1,2,3), define a set of decision variahles:
W= tons of wheat sold

wh=tons of corn sold

w¥= tons of beets sold at $36/T
wi=tons of beets sold at $10/T
vi=tons of wheat purchased

= tons of corn purchased

i
Va
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DETERMINISTIC EQUIVALENT LP:

Minimize 150, +230x, + 260x, + %(238}:,' —170w] +210y} ~ 150w — 364 — 10w} )
+ % (2387 = 170w + 2103 —150u3 —36w; — 10w )

+ % (238}:: —170w; +210; — 150w — 36m} — lﬂwi)

subject to
X+ X% +x, <500

Scenario Scenarial? Scenaria 3

3x +y —w 2200 2.5x 437 —w 2200 2x,+ 3 —wui 2200
3.6x, +35 —wh =240 3x,+37 —wl>240 2.4x, +y5—wl =240

24x,—wy —wy 20 20x,— w; —uj 20 16x, — wi—w, 20
wh <6000 Wi <6000 w; <6000
X, >0,i=12,3;

F20,i=12& k=1,2,3;
wh>0,11,2,34 & k=1,2,3

Thus, all possible second-stage decisions are made simtlfaneously, in a single large I.P.
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Optimal Solution: Expected profit= $108,390

Wheat Corn Sugar Reets
Tirst stage Plant: 170 Acres 80 Acres 250 Acres
k=1 Yield 510T 288 T 6000 T
"Good yield" | Sales 310T 48T 6000 T
Purchase - - -
k=2 Yield 425T 240T 5000 T
"Fair yield" Sales 225T - 5000T
Purchase  -- -
k=3 Yield 340T 192T 4000 T
"Bad yicld" | Sales 140 T - 4000 T
Purchase - 48T -

+ Using the original solition (where expected values of vields were assumed, ic.,
planting 120 acres of wheat, 80 acres of corn, & 300 acres of beets) his expected profit
would be $107,240 (which is $1,150 less than the optimal expected value) .

The Expected Valite of Perfect Information is $115,406 - $108,390 = $7016
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"SPLITTING" FIRST-STAGE VARIABLES
For cach scenario k, define a first-stage decision X which must equal the original first-

stage decision (which we now denote by x). We can then write the cquivalent LP:
K
Z=mincq,+ Y, pgy”
A=
subject to
FeXx
7;,x"+Wy" —h, k=1,..K
E=¥ k=1,.K
£ 20, k=1,..K

Tn order to separate the LP by scenario, we need to "relax" the constraints

f=Xk=1..K

LAGRANGIAN RELAXATION

Given a family of Lagrangian multiplier vectors Ay, k=1,...K, we define the relaxation:
K K
D(4)=minex"+ Zpquyk + Zlk (xk - x“)
A= A=
subject to Lex

T.x* +Wy* =h.k=1...K,

;

¥ 20,k=1..K: 7" 20,k=1,2,.K

That is,

D(A)= min(r—ﬁ;/l‘ ]rc +§i[).‘ 'S +p‘q‘y‘]

suhject to the above constraints.

This is motivated by the fact that the problem then separates into K+1 subproblems:

D(l)=Dﬂ(An~~-/1K)+ng(A*)

where
K
D, (A)= min(c— e ]x"
=
subject to x°e X
and, for cach k=1, ., X:

D, (A)=minA.x* + p,q, "

suhject to Tx* +1y* — b,

x*>0. >0
a2
Dual Subproblem 0 Dual Subproblem for
for 1% Stage Scenario k, k=1, ...K
min(c—i& ]vr Min Z'kxk + Prdr ¥

= subject to

subject to x° € X Tx* +Wy* =,
X220, 20

The vatue D(A)= D, (4,... A4 )+ Z D, (A, ) provides a fower bound on the optimal

K.
=

cost 7.

The Lagrangian dital prohlem is to select the multipliers which will produce the fighfesr

such lower bound:
D=maxD (A)
i
Note: In the lincar case, D =Z and there is no "duality gap".

Master Prablem:

Adnst mitkiphers A
A
L LETANg]
DA k=0.1... K
Yes
Converged?  |———» STOP
Na

BENDERS' DECOMPOSITION

Benders' partitioning (commonly known in stochastic programming as the "L-Shaped
Methad") achieves separabhility of the second stage decisions, but in a different manner.
Given a first-stage decision xc, solve for cach scenario k=1, ...K the sccond-stage T.P:
P, (x“ ) =ming, "
subjectto Wy* =k, —Tx° 3 >0
i
Then P( X" ) =cx" + 2 oA ( X ) provides us with an u#pper bound on the optimal cost
k=1
Z, ie.,
DA <7 <P(x)



Furthermore, solving cach LP provides us with a vector A, of dual variables

corresponding to the constraints x° = x*.

If 7 is the dual solution of the LP
Pk(x“ ) =ming,y*
subjectto Wy =k —Tx" 3 20

then A, = -T;'x,

An aside: Computing A,:
The dual of
Min ¢, y*
subject to
Tx* +Wy* =h,,
=8
x>0
isthe TP
Max iz, +x°4,
suhject to:
T/m,+I4 =0
Win, <q,

If we eliminate l‘ using the equality constraint, we ohtain A, — —Tan:k and the dual LP
Max (hk —Tx" )7rk
subject to
Wim, <q,

The original prohlem now is seen to he equivalent to
K
Mincx® +Y p. R (x“)
k=1

subjectto x°e X

By making usc of dual information obtained after M cvaluations of 7, (x“ ), Benders'
procedure forms an approximation (a convex piccewise-lincar function) of £, (x“ ):

P, (x“)z [oax {(xix" + [3;}

sa that the original prohlem reduces (with introduction of new variables 8, )to
K
Minex’ +Y p,6;
k=1
subjectto x° € X

and
8, zalx"+ Bl i=1,..M; k=1, ..K

That is, we have approximated F, (x“) by the maximum of a finite number of lincar

functions, i.c., by a piecewise-linear convex fitnction:

xf.l

Bendens’ Master Problem:

Seket first-stage decisine X

Renders’ Subproblems:
Subve P(xf), k=1.2.. K.

In cither the Lagrangian relaxation approach or Benders' decomposition, the burden of
the computation lies in the respective master problems: scarching for the optimal A in the
casc of Lagrangian relaxation, & scarching for the optimal x” in the case of Benders'

decomposition.

The subprohblems, heing LPs separable hy scenario, are easily solved in comparison.

Master Prablem:
Adbust mukiphers &

Benders® Mastcr Prableme:
Scket first-stage decisians %@ —

© A
Benders" Subprablems:
Sake P(x). k=12...K Lagrang:
DAL k=0.1..K

Yes
Converged? |——*STOP

.

sTOP

CROSS-DECOMPOSITION

Cross-decomposition is a hybrid of Benders' decomposition and Lagrangian relaxation, in
which the subproblem of each algorithm serves the purpose of the master problem of the
other.

That is, Benders' subproblem receives the first-stage decisions x” from the Dual

subproblem T, rather than from the Renders' master problem.

Primal Subprablem for Tnformation Tal Subproblem 0 far
Scenaria k exchange st
1™ Stage
Min p, g, " . & .
o R R Min|e-) A I*
subject to Ll ‘E:‘T %
= - 0 .
Wy = (hk Ix ) o subject to
k 6p
# >0 ( fixed
¥ (x" fixed) fex

Likewise, the Dual subproblem Dy receives the necessary multipliers A from the

Benders' suhprohlem, rather than from the Dual master prohlem.
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CROSS-DECOMPOSITION

Note that the algorithm can be "strcamlined"-- only one of the dual subproblems Da(A)

needs to be solved at cach iteration, except when the termination criterion
P(x")-D(A)<e

is to be tested.

, A
Benders Lagrangian
Subproblems:
Subve Pl k=12,..K. = Dy k1L K
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MEAN VALUE CROSS DECOMPOSITION

Convergence is improved if the mean of all previously generated Lagrangian multipliers

and first-stage decisions are sent to the Lagrangian and Benders' subproblems,

respectively.

Renders’ WA“ Lagrangian

by
Solve Py(xf). Solve Dk
k=10.K k=0.1...K
x X©
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EXAMPLE

The cross-decomposition algorithm described above was implemented in the APT
language (APL+WIN 3.0). First, the mean of all prior primal & dual solutions was used

at cach iteration. The result after 100 iterations was as follows:

Total coet: ~1G€6456€.%4, found at iteraticn #72

Rest lower kound: ~11G757.17
Gap= 42G5.23, ar 4.03%

Stage Cne Variakles:
i X[4]

AW
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The plot of upper & lower bounds at cach iteration :

w
®
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The mean values of first-stage variables used in the primal subproblems at cach iteration.
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As an alternative, exponential smoothing (with smoothing factor 10%) was used for both
primal and dual solutions. After 100 iterations, the following was the best solution

found:

Tctal ccst: T1C821C.76681, fcund at iteraticn #€8

Best lcwer heound: T111187,C364
Gap= 25/€.24832, cr 2./5C417387%

Stage Cne Variables:

3 X[

1 1lee.7C
2 &1.5C
2 25C.87
4 c.14

This solution is very nearly optimal. (Optimal solution is —$108390.)
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Benders’ & Lagrangian
subproblems
§ "st0m{ at each iteration

w
")

Best upper & lawer L
bounds
at each iteratian
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RESEARCH ISSUES

. Given that the number of scenarios is exfremely large (or probability distributions arc continuous
and not discrete), how does one da "sampling" of scenarios in the crass-decampasition algarithm?

N

. How can the cross-decomposition algorithm be extended to multi-(i.c., greater than 2) stages?

w

. Given uncertainty in the parameters of the probahility distributions describing fitture scenarios,
perhaps it is not appropriate ta continue iterations until the duality gap between upper & lower
bounds is ncarly zero-- can we determine an appropriate gap between upper & lower bound fora
termination criterion for the cross-decaomposition algarithm?

IS

. Casc of integer first-stage decisions.

+ The Tagrangian subproblems T(A) for scenarios k—1....K are now mixed-integer T.P
problems, which are substantially more difficult ta solve.

+ The computational savings obtained by salving only the Lagrangian subprablem Dr(X) and not
the Lagrangian subproblems Dy(A) for secnarios k=L1....K at cvery iteration beconx mare
significant!

+ The Lagrangian subprohlems Dy(A) far scenarios k=1....K may accasionally he salved, n
arder ta test the duality gap as a termination criterion. How can information about the dual
variables gathered from Benders' subprobilems be accumulated in order to construct a Benders'
master prablem for cach individual Th(A)?
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