Walnut Orchard has two farms that grow wheat \& corn.

Because of differing soil conditions, there are differences in the yields and costs of growing crops on the two farms:

Walnut Orchard


```
ODennis Bricker & Industrial Engineering
The University of Iowa
```


Decision variables:

C1 = \# of acres of Farm 1 planted in corn
W1 = \# of acres of Farm 1 planted in whea
$\mathrm{C} 2=$ \# of acres of Farm 2 planted in corn
$\mathrm{W} 2=\#$ of acres of Farm 2 planted in wheat

Constraints:

- Restrictions of the number of acres of each farm which are planted in crops $\mathrm{C} 1+\mathrm{W} 1 \leq 100$
$\mathrm{C} 2+\mathrm{W} 2 \leq 150$
- Restrictions of the minimum quantity of each crop. $100 \mathrm{C} 1+120 \mathrm{C} 2 \leq 11000$
$40 \mathrm{~W} 1+35 \mathrm{~W} 2 \leq 6000$
- Nonnegativity constraint on each of the four variables. $\mathrm{C} 1 \geq 00_{2} . \mathrm{C} 2 \geq 00_{\mathrm{g}} . \mathrm{W} 1 \geq 0$. $\mathrm{W} 2 \geq \tilde{0}$

Objective:

Minimize $90 \mathrm{C} 1+115 \mathrm{C} 2+90 \mathrm{~W} 1+80 \mathrm{~W} 2$

That is, the optimal plan is to plant

- 3.85 acres of corn on farm \#1,
- 88.46 acres of corn on farm \#2 ,
- 96.15 acres of wheat on farm \#1 and
- 61.54 acres of wheat on farm \#2.

The total cost will be $\$ 24,096.15$.

FARM/1..2/:ACRES;
CROP/CORN, WHEAT/:RQMT;
PLANT (FARM, CROP) : COST, YIELD, X;

ENDSETS

DATA:
ACRES $=100$ 150;
RQMT $=110006000$;
YIELD= 10040
$\operatorname{COST}=\begin{array}{rr}120 & 35 ; \\ 90 & 90\end{array}$
11080 ;

EnDDATA

MIN $=$ @SUM (PLANT: COST*X);
@FOR (FARM (I) :
@SUM (CROP (J) : X(I,J)) <= $\operatorname{ACRES}(I))$;
@FOR (CROP (J) :
@SUM(FARM(I): $\operatorname{YIELD}(I, J) * X(I, J))>=\operatorname{RQMT}(J)) ;$ End

The LINGO model (without using sets, etc.) is nearly the same:

MIN $=90 * \mathrm{C} 1+115 * \mathrm{C} 2+90 * \mathrm{~W} 1+80 * \mathrm{~W} 2$;

$$
\begin{aligned}
& \mathrm{C} 1+\mathrm{W} 1<= \\
& \mathrm{C} 2+\mathrm{W} 2<= \\
& 100 ; \\
& \hline
\end{aligned}
$$

$$
100 * \mathrm{c} 1+120 * \mathrm{C} 2>=11000 \text {; }
$$

$$
40 * W 1+35 * W 2>=6000 ;
$$

END

Note that LINGO requires the "*" to indicate multiplication, and the semicolon to indicate end of statement.

Using sets allows us to generalize the model, separating the data from the model.

The solution:

Ranges in which the basis is unchanged:

	Objective Coefficient Ranges Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X(1, CORN)	90.00000	0.2380952	INFINITY
X(1, WHEAT)	90.00000	INFINITY	0.2380952
X(2, CORN)	110.0000	INFINITY	0.2857143
X(2, WHEAT)	80.00000	0.2083333	INFINITY

Row	Righthand Side Ranges		
	Current	Allowable	Allowable
	RHS	Increase	Decrease
2	100.0000	28.75000	1.041667
3	150.0000	29.76190	1.190476
4	11000.00	142.8571	2875.000
5	6000.000	41.66667	1041.667

From LINDO:
THE TABLEAU

ROW	BASIS	C1	C2	W1	W2	SLK 2	SLK 3	SLK 4	SLK 5	
1	ART	0.0	0.0	0.0	0.0	17.692	14.231	1.1	2.7	$-0.24 \mathrm{E}+05$
2	C1	1.0	0.0	0.0	0.0	3.692	3.231	0.027	0.092	3.846
3	W2	0.0	0.0	0.0	1.0	3.077	3.692	0.031	0.077	61.538
4	C2	0.0	1.0	0.0	0.0	-3.077	-2.692	-0.031	-0.077	88.462
5	W1	0.0	0.0	1.0	0.0	-2.692	-3.231	-0.027	-0.092	96.154

