

Solving Linear Equations

Elementary Row Operations

- Multiply any row of the matrix by a (positive or negative) scalar
- Add to any row a scalar multiple of another row
- Interchange two rows of the matrix

(Strictly speaking, the third is not "elementary", because it can be accomplished by a sequence of the other two row operations!)

© Dennis L. Bricker
Dept of Mechanical & Industrial Engineering
University of Iowa

Solving Linear Eqns

8/26/2003

page 1

Solving Linear Eqns

8/26/2003

page 3

Contents

- Preliminaries
 - Elementary Matrix Operations
 - Elementary Matrices
 - Echelon Matrices
 - Rank of Matrices
- Elimination Methods
 - Gauss Elimination
 - Gauss-Jordan Elimination
- Factorization Methods
 - Product Form of Inverse (PFI)
 - LU Factorization
 - LDL^T Factorization
 - Cholesky LL^T Factorization

Elementary Column Operations

- Multiply any column by a (positive or negative) scalar
- Add to any column a scalar multiple of another column
- Interchange two columns of the matrix

Solving Linear Eqns

8/26/2003

page 2

Solving Linear Eqns

8/26/2003

page 4

Equivalence of Matrices

Matrix **A** is *equivalent* to matrix **B** ($A \sim B$) if **B** is the result of a sequence of elementary row &/or column operations on **A**.

If only row operations are used, then **A** is *row-equivalent* to **B**

If only column operations are used, then **A** is *column-equivalent* to **B**

ECHELON MATRIX

Example

$$\left[\begin{array}{ccccccc} 1 & 5 & 0 & 3 & -1 & 2 & 8 \\ 0 & 0 & 1 & -1 & 2 & 5 & 0 \\ 0 & 0 & 0 & 1 & 3 & 1 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right] \quad \left. \right\} k=3 = \text{rank}$$

Note: every matrix is row-equivalent to some echelon matrix.

Echelon Matrix

--an $m \times n$ matrix with the properties

- each of the first k ($0 \leq k \leq m$) rows has some nonzero entries, and the remaining $m-k$ rows consist only of zeroes
- the first nonzero entry in each of the first k rows is a "1"
- in each of the first k rows, the number of zeroes preceding the leading "1" is smaller than it is in the next row

Theorem

If **A** is equivalent to **B**, then the rank of **A** equals the rank of **B**.

RANK: size of the largest (square) nonsingular submatrix

Elementary Matrices

An **elementary matrix** E is the result of performing an elementary operation on an identity matrix.

Example

(Elementary row operation: add -2 times first row to third row)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

If E is an $m \times m$ elementary matrix and A is an $m \times n$ matrix, then AE equals the result of performing the same elementary **column** operation on matrix A.

Example:

add -2 times third column to first column

$$\begin{bmatrix} 2 & -1 & 0 \\ 5 & 1 & 3 \\ 4 & 3 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 1 & 3 \\ 2 & 3 & 1 \\ -2 & 2 & 1 \end{bmatrix}$$

↑ result of subtracting twice third column from first

post-multiplication by elementary matrix

Multiplication by an Elementary Matrix

pre-multiplication by elementary matrix

If E is an $m \times m$ elementary matrix and A is an $m \times n$ matrix, then EA equals the result of performing the same elementary **row** operation on matrix A.

Example:
add -2 times first row to third row

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 & 4 \\ 5 & 1 & 3 & -1 \\ 4 & 3 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 5 & 1 & 3 & -1 \\ 0 & 5 & 1 & -6 \end{bmatrix}$$

Calculation of Matrix Inverse

To compute A^{-1} , augment the matrix A on the right by the appropriate identity matrix $[A|I]$, and perform elementary row operations on this matrix to obtain $[I|P]$. Then $P = A^{-1}$

Calculation of Matrix Inverse

Example:
$$\left[\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1 \end{array} \right] \sim \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & -4 & -5 & 3 \\ 0 & 1 & 0 & 3 & 3 & -2 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{array} \right]$$

and so
$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ -1 & -1 & 1 \\ 0 & 1 & 3 \end{array} \right]^{-1} = \left[\begin{array}{ccc} -4 & -5 & 3 \\ 3 & 3 & -2 \\ -1 & -1 & 1 \end{array} \right]$$

Pivot

A pivot!

$$\left[\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1 \end{array} \right] \xrightarrow{\substack{R_1 \leftarrow R_1 - \frac{1}{3}R_3 \\ R_2 \leftarrow R_2 - \frac{1}{3}R_3 \\ R_3 \leftarrow \frac{1}{3}R_3}} \left[\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

Not a pivot!

$$\left[\begin{array}{ccc|ccc} 1 & 2 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right] \xrightarrow{\substack{R_1 \leftarrow R_1 - R_2 \\ R_2 \leftarrow R_2 - \frac{1}{3}R_3 \\ R_3 \leftarrow \frac{1}{3}R_3}} \left[\begin{array}{ccc|ccc} 2 & 3 & 0 & 1 & 0 & 0 \\ -1 & -4/3 & 0 & 0 & 1 & 0 \\ 0 & 1/3 & 1 & 0 & 0 & 1 \end{array} \right]$$

Pivot

Pivot operation on row r , column s
i.e., element A_r^s of $m \times n$ matrix A :

A sequence of elementary row operations:

- For $i=1,2,\dots,m$ but $i \neq r$:
add $-A_i^s/A_r^s$ times row r to row i
- Multiply row r by the scalar $1/A_r^s$

Effect: column s will consist of zeroes, with the exception of a "1" in row r .

Warning: this is not the only sequence of elementary row operations having this effect!

Pivot Matrix

A pivot matrix corresponding to a pivot on row r , column s of a matrix A is the result of performing the same elementary row operations on the $m \times m$ identity matrix.

A pivot matrix is the product of elementary matrices!

Pivot Matrix

Differs from the $m \times m$ identity matrix only in column r

$$\left[\begin{array}{cccccc} 1 & 0 & \dots & -\frac{A_1^s}{A_r^s} & \dots & 0 & 0 \\ 0 & 1 & \dots & -\frac{A_2^s}{A_r^s} & \dots & 0 & 0 \\ \vdots & & & & & & \\ 0 & 0 & \dots & \frac{1}{A_r^s} & \dots & 0 & 0 \\ 0 & 0 & \dots & -\frac{A_{m-1}^s}{A_r^s} & \dots & 1 & 0 \\ 0 & 0 & \dots & -\frac{A_m^s}{A_r^s} & \dots & 0 & 1 \end{array} \right]$$

Pivot Matrix

To store a pivot matrix, we need not store the entire matrix, but only

- the number (r) of the pivot row
- column $\#r$ of the pivot matrix (the *eta* vector)

$$\eta = \left[-\frac{A_1^s}{A_r^s}, -\frac{A_2^s}{A_r^s}, \dots, \frac{1}{A_r^s}, \dots, -\frac{A_m^s}{A_r^s} \right]$$

This is sufficient information to reconstruct the pivot matrix.

Product Form of the Inverse

If matrix A is nonsingular, then a sequence of pivots down the diagonal of A (with possible row interchanges to avoid zero pivot elements) will reduce A to the identity matrix. This is equivalent to pre-multiplying A by a sequence of pivot matrices:

$$\begin{aligned} & (P_m \cdots (P_3(P_2(P_1A))) \cdots) = I \\ \Rightarrow & (P_m \cdots P_3 P_2 P_1) A = I \\ \Rightarrow & A^{-1} = P_m \cdots P_3 P_2 P_1 \end{aligned}$$

Product Form of the Inverse

In the Revised Simplex Method, computation of values in the tableau is done, not by pivoting in the tableau, but by either pre-multiplication or post-multiplication by the inverse matrix:

- Computation of simplex multipliers

$$\pi = c^B (A^B)^{-1}$$

used in selecting pivot column

- Computation of substitution rates

$$\alpha = (A^B)^{-1} A^s$$

used in performing the pivot

Computing Simplex Multipliers

Solve $\pi A^B = c^B$ for π :

$$\begin{aligned}\pi &= c^B (A^B)^{-1} \\ &= c^B (P_k P_{k-1} \cdots P_3 P_2 P_1) \\ &= (((\cdots (c^B P_k) P_{k-1} \cdots P_3) P_2) P_1)\end{aligned}$$

"Backward Transformation", or BTRAN

The pivot matrices are processed in the *reverse* of the order in which they were generated, i.e., $P_k P_{k-1} \cdots P_3 P_2 P_1$

BTRAN

$$\pi_j = \begin{cases} v_j & \text{for } j \neq r \\ \sum_i v_i \eta_i & \text{for } j = r \end{cases}$$

Step 0: Set $v = c^B$ and $k = \#$ of ETA vectors

Step 1: Using BTRAN formula above, compute with ETA vector # k

Step 2: If $k > 1$, let $v = \pi$ and $k = k-1$, and go to step 1; else proceed to step 3.

Step 3: The final value of π is the solution of $\pi A^B = c^B$

BTRAN

For each pivot matrix P , we need to calculate $\pi = v P$

column $r \rightsquigarrow$

$$\pi = [v_1 \ v_2 \ \cdots \ v_{m-1} \ v_m] \begin{bmatrix} 1 & 0 & \cdots & \eta_1 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & \eta_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \eta_r & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \eta_{m-1} & \cdots & 1 & 0 \\ 0 & 0 & \cdots & \eta_m & \cdots & 0 & 1 \end{bmatrix}$$

$$= [v_1 \ v_2 \ \cdots \ \left(\sum_i v_i \eta_i\right) \ \cdots \ v_{m-1} \ v_m]$$

entry $r \rightsquigarrow$

FTRAN

Solve $A^B \alpha = A^s$ for substitution rates α

$$\begin{aligned}\alpha &= (A^B)^{-1} A^s \\ &= (P_k P_{k-1} \cdots P_3 P_2 P_1) A^s \\ &= (P_k (P_{k-1} \cdots P_3 (P_2 (P_1 A^s) \cdots)))\end{aligned}$$

"Forward Transformation", or FTRAN

The pivot matrices are processed in the same order that they were generated, i.e., $P_1, P_2, P_3, \dots, P_{k-1}, P_k$

FTRAN

column $r \swarrow$

$$\alpha = \begin{bmatrix} 1 & 0 & \cdots & \eta_1 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & \eta_2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \eta_r & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & \eta_{m-1} & \cdots & 1 & 0 \\ 0 & 0 & \cdots & \eta_m & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} = \begin{bmatrix} v_1 + \eta_1 v_r \\ v_2 + \eta_2 v_r \\ \vdots \\ \eta_r v_r \\ v_m + \eta_m v_r \end{bmatrix}$$

That is,

$$\alpha_i = \begin{cases} v_i + \eta_i v_r & \text{for } i \neq r \\ \eta_r v_r & \text{for } i = r \end{cases}$$

Gauss Elimination

-- a method for solving $Ax=b$ by performing a sequence of elementary row operations on the augmented matrix $[A|b]$ to reduce it to an echelon matrix. The solution is then obtained by "back-substitution".

FTRAN

$$\alpha_i = \begin{cases} v_i + \eta_i v_r & \text{for } i \neq r \\ \eta_r v_r & \text{for } i = r \end{cases}$$

Step 0: Set $v = A^s$ (e.g., column of original tableau), and $k=1$.

Step 1: Using the FTRAN formula above, compute α

Step 2: If $k < \#$ of ETA vectors, then let $v = \alpha$ and $k=k+1$, and go to step 1; else proceed to step 3.

Step 3: The final value of v is the solution α of the equation $A^B \alpha = A^s$

Example: $\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 + 2x_2 + 2x_3 = 2 \\ -x_1 - x_2 + x_3 = 2 \end{cases}$

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 4 \\ 1 & 2 & 2 & 2 \\ -1 & -1 & 1 & 2 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 3 \end{array} \right] \Rightarrow \begin{cases} x_1 + x_2 + x_3 = 4 \\ x_2 + x_3 = -2 \\ x_3 = 3 \end{cases}$$

Backsubstitution:

$$\begin{cases} x_1 = 4 - x_2 - x_3 \\ x_2 = -2 - x_3 \\ x_3 = 3 \end{cases} \Rightarrow x_1 = 6$$

Gauss-Jordan Elimination

--similar to Gauss elimination, except that the coefficient matrix is diagonalized by further elementary row operations, eliminating non-zeroes above as well as below the diagonal. Eliminates the need for "back-substitution".

Compared to "Gauss Elimination Plus Back Substitution", Gauss-Jordan Elimination requires more computation-- especially if the equations are to be solved for several right-hand-side vectors!

Example:
$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ x_1 + 2x_2 + 2x_3 = 2 \\ -x_1 - x_2 + x_3 = 2 \end{cases}$$

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 4 \\ 1 & 2 & 2 & 2 \\ -1 & -1 & 1 & 2 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & 4 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 3 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 3 \end{array} \right]$$

That is,
$$\begin{cases} x_1 = 6 \\ x_2 = -5 \\ x_3 = 3 \end{cases}$$

Gauss Elimination as Matrix Factorization

$$A = P L U$$

P is a permutation matrix (which performs the interchange of rows for partial pivoting)

L is a lower triangular matrix,

U is an upper triangular matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -1 & 1 \\ 0 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = U$$

$R_2 \leftarrow R_2 + R_1$ $R_3 \leftarrow R_3 - R_2$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Upper-triangular matrix
Lower-triangular matrices

Suppose that we need to solve

$$\begin{cases} x_1 + 2x_2 + x_3 = 2 \\ -x_1 - x_2 + x_3 = 5 \\ x_2 + 3x_3 = -1 \end{cases}$$

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\underbrace{E_2 E_1}_L A = U$$

$$\hat{L} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}, \hat{L}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = L$$

Lower-triangular matrix

$$\hat{L} A = U \implies A = \hat{L}^{-1} U = L U$$

Matrix A is factored into a product of lower & upper triangular matrices!

To solve $Ax = b$, i.e., $L(Ux) = b$:

- solve $Ly = b$ for y (forward substitution)

$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} y = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} \implies \begin{cases} y_1 = 2 \\ y_2 = 5 + y_1 = 7 \\ y_3 = -1 - y_2 = -8 \end{cases}$$

- solve $Ux = y$ for x (backward substitution)

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} x = \begin{bmatrix} 2 \\ 7 \\ -8 \end{bmatrix} \implies \begin{cases} x_1 = 2 - 2x_2 - x_3 = -36 \\ x_2 = 7 - 2x_3 = 23 \\ x_3 = -8 \end{cases}$$

CHOLESKY FACTORIZATION

Suppose that A is a **symmetric** & **positive definite** matrix.

Then the **Cholesky factorization** of A is

$$A = \hat{L} \hat{L}^T$$

where \hat{L} is a **lower triangular** matrix.

Computation:

Suppose that we have the factorization

$$A = L D L^T$$

Then if $D_i^i \geq 0$, we can define a new diagonal matrix \hat{D} where

$$\hat{D}_i^i \equiv \sqrt{D_i^i}$$

Then $A = L D L^T = L \hat{D} \hat{D} L^T = (L \hat{D}) (L \hat{D})^T = \hat{L} \hat{L}^T$ where $\hat{L} = L \hat{D}$

Cholesky factorization...

$$\begin{array}{c}
 \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 2 \end{array} \right] \xrightarrow{\text{R}_3 \leftarrow \text{R}_3 - \frac{1}{2} \text{R}_1} \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ -\frac{1}{2} & 0 & 1 & 0 & 1 & \frac{3}{2} \end{array} \right] \xrightarrow{\text{R}_3 \leftarrow \text{R}_3 - \frac{1}{2} \text{R}_2} \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ -\frac{1}{2} & -1 & 1 & 0 & 0 & \frac{1}{2} \end{array} \right] \\
 \text{Inverses:} \\
 \text{R}_3 \leftarrow \text{R}_3 + \frac{1}{2} \text{R}_1 \\
 \text{R}_3 \leftarrow \text{R}_3 + \text{R}_2 \\
 \text{R}_3 \leftarrow \text{R}_3 - \frac{1}{2} \text{R}_2
 \end{array}$$

Example:

We wish to find the Cholesky factorization of the matrix

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

The lower triangular matrix L is found by performing (on the identity matrix) the inverse of the row operations used to reduce the A matrix:

$$\left. \begin{array}{l} R_3 \leftarrow R_3 + \frac{1}{2} R_1 \\ R_3 \leftarrow R_3 + R_2 \end{array} \right\} \Rightarrow L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & 1 & 1 \end{bmatrix}$$

We now have the LU factorization of matrix A:

$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & \frac{1}{2} \end{bmatrix}$$

Define the diagonal matrix D:

$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \Rightarrow D^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Note that

$$\hat{U} = D^{-1}U = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Define the diagonal matrix \hat{D} where $\hat{D}_i^i = \sqrt{D_i^i}$:

$$\hat{D} = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\text{Then compute } \hat{L} = \hat{L}\hat{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

So the Cholesky factorization is

$$A = \hat{L}\hat{L}^T = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 1 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

And so,

$$A = LDL^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$