 Sampling Distributions Normal distribution Chi-square distribution Student's t-distribution 	A statistic is any function of sample data X ₁ , X ₂ , X _n . For example, • the sample mean : $\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$ • the sample variance : $S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$ The probability distribution of a statistic is called
	a sampling distribution.
Sampling Distributions 2/15/2002 page 1 of 15	Sampling Distributions 2/15/2002 page 2 of 15
If X_i each have mean μ and variance σ^2 , then	If each X_i has $N(0, 1)$ distribution, then the statistic
(by the Central Limit Theorem)	$\chi_n^2 = \sum_{i=1}^n X_i^2$
the sample mean has approximately normal distribution: $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$	has the distribution known as chi-square with n degrees of freedom. with density function $f(z) = \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} z^{\binom{n}{2}-1} e^{-\frac{z}{2}}$ for $z > 0$ The mean is n and variance is 2n. Gamma function Γ is a generalization of the factorial function, where $\Gamma(n)=(n-1)!$ if n is an integer.
Sampling Distributions 2/15/2002 page 3 of 15	Sampling Distributions 2/15/2002 page 4 of 15

Use of Chi-Square Distribution

Suppose that $X_i \sim N(\mu, \sigma^2)$.

Then the statistic

$$\frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}$$

or, since the sample variance is

$$S^{2} \equiv \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} \Longrightarrow \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = (n-1)S^{2}$$

we have the result

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Sampling Distributions

2/15/2002

The density function of t_k is extremely messy:

$$f(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi} \Gamma\left(\frac{k}{2}\right)} \left(\frac{t^2}{k}\right)^{-\frac{k+1}{2}}$$
Student's total

The *mean* is 0 and

the variance is $\frac{k}{k-2}$ for k>2.

As $k \rightarrow \infty$, the t-distribution reduces to the standard normal distribution.

Gamma function Γ is a generalization of the factorial function, where $\Gamma(n)=(n-1)!$ if n is an integer.

Student's t-distribution

(Note: "Student" was a pseudonym of an English chemist, W.S. Gosset, in a 1908 publication.)

If $X \sim N(\mu, \sigma^2)$ and $Y \sim \chi_k^2$, then the statistic t_k defined by

 $t_k = \frac{X}{\sqrt{Y_k}}$

has what is called

"Student's t-distribution" with k degrees of freedom.

2/15/2002

page 6 of 15

Suppose that $X_1, X_2, ..., X_n$ all have $N(\mu, \sigma^2)$ distribution, and we compute the sample mean \overline{X} and sample variance S^2 . Then the statistic

$$\frac{X-\mu}{S/\sqrt{n}}$$

has t-distribution with n-1 degrees of freedom.

page 5 of 15

Application of Student's t-distribution Confidence Intervals of Mean Performance Measures

Suppose that we perform a limited number, *n*, of replications of a simulation, obtaining some performance measure X_i in the ith replication. The sequence $\{X_1, X_2, ..., X_n\}$ are independent & identically-distributed (i.i.d.) random variables, but the mean and variance are unknown.

How good an estimate of the true mean is the sample mean?

Sampling Distributions	2/15/2002

Given an α , we want β such that the probability that μ is in the *confidence* interval

$$\overline{X} \pm \beta$$
, i.e., $\mu \in \left[\overline{X} - \beta, \overline{X} + \beta\right]$
i.e.,
 $P\left\{ \left|\overline{X} - \mu\right| > \beta \right\} \le \alpha$

The sample variance is

to be at least $1-\alpha$,

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

Clearly, the larger the sample variance, the less confident we can be that \overline{X} is a good estimate of μ , i.e., the larger we can expect to be β . We estimate the expected performance of the system by the sample mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

If we use more replications (i.e., larger *n*), we would expect a better estimate, of course.

What can we say about the true expected value μ of the performance X of the simulated system?

Sampling Distributions

2/15/2002

page 10 of 15

Student's t-distribution

The appropriate value of β is chosen so that, for the t-distribution with n-1 degrees of freedom,

There are tables available for various degrees of freedom k and probabilities $\alpha = 10\%$, 5%, 1%, 0.1%, etc.

page 9 of 15

Example: Suppose that we perform 10 simulations, and obtain the following average values of X: 4.58578 4.56717 4.99381 5.43874 4.9137 4.41366 5.28951 4.96028 5.70154 <u>4.82989</u> Average: 4.96941	Choose $\alpha = 5\%$. Consulting a table of Student's t-distribution, we find that, for $n-1 = 9$ degrees of freedom, $\begin{array}{c c} \hline Degrees & of \\ \hline reedom & 10\% & 5\% & 1\% \\ \hline 8 & 1.860 & 2.306 & 3.355 \\ 9 & 1.833 & 2.262 & 3.250 \\ 10 & 1.812 & 2.228 & 3.169 \end{array}$
The sample variance is $S^2 = 0.149982 \implies S = 0.387275$ How close to the true mean μ of X is this sample mean 4.96941?	$-\beta$ $\int_{0}^{0}^{\beta}$ so that the confidence interval is $\left[\overline{X} - t_{5\%9} \frac{S}{\sqrt{x}}, \overline{X} + t_{5\%9} \frac{S}{\sqrt{x}}\right]$
Sampling Distributions 2/15/2002 page 13 of 15	$\begin{bmatrix} 0.157 & \sqrt{10} \end{bmatrix}$ Sampling Distributions 2/15/2002 page 14 of 15
The 95% confidence interval for the mean value μ is $4.96941 \pm 2.262 \times \frac{0.387275}{10} = 4.96941 \pm 0.0876016$ i.e, we have 95% confidence that $\mu \in [4.88181, 5.05701]$ Note: these values of X were in actuality sampled from a N(5,1) distribution!	
Sampling Distributions 2/15/2002 page 15 of 15	