Sampling Distributions

- Normal distribution
- Chi-square distribution
- Student's t-distribution

If X_{i} each have mean μ and variance σ^{2}, then
(by the Central Limit Theorem)
the sample mean has approximately normal distribution:

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

A statistic is any function of sample data $X_{1}, X_{2}, \ldots X_{n}$.
For example,

- the sample mean
$\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$
- the sample variance: $\quad S^{2}=\frac{\sum_{i=1}\left(X^{\prime}\right.}{n-1}$

The probability distribution of a statistic is called
a sampling distribution.

If each X_{i} has $N(0,1)$ distribution, then the statistic

$$
\chi_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2}
$$

has the distribution known as

$$
\text { chi-square with } n \text { degrees of freedom. }
$$

with density function

$$
f(z)=\frac{1}{2^{n / 2} \Gamma\left(\frac{n}{2}\right)} z^{(n / 2-1)} e^{-z / 2}
$$

$$
\text { for } z>0
$$

The mean is n and variance is $2 n$.

Gamma function Γ is a generalization of the factorial function, where $\Gamma(n)=(n-1)!$ if n is an integer.

Use of Chi-Square Distribution

Suppose that $X_{i} \sim N\left(\mu, \sigma^{2}\right)$.
Then the statistic

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

or, since the sample variance is

$$
S^{2} \equiv \frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1} \Rightarrow \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=(n-1) S^{2}
$$

we have the result

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

The density function of t_{k} is extremely messy:

$$
f(t)=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k \pi} \Gamma\left(\frac{k}{2}\right)}\left(\frac{t^{2}}{k}\right)^{-\frac{k+1}{2}}
$$

The mean is O and
the variance is $\frac{k}{k-2}$ for $\mathrm{k}>2$.
As $k \rightarrow \infty$, the t-distribution reduces to the standard normal distribution.

Gamma function Γ is a generalization of the factorial function, where $\Gamma(n)=(n-1)!$ if n is an integer.

Student's t--listribution

(Note: "Student" was a pseudonym of an English chemist, W.S. Gosset, in a 1908 publication.)

If $X \sim N\left(\mu, \sigma^{2}\right)$ and $Y \sim \chi_{k}^{2}$, then the statistic t_{k} defined by

$$
t_{k}=\frac{X}{\sqrt{Y / k}}
$$

has what is called
"Student's t -distribution" with k degrees of freedom.

Suppose that $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$ all have $N\left(\mu, \sigma^{2}\right)$ distribution, and we compute the sample mean \bar{X} and sample variance S^{2}.
Then the statistic

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

has t -distribution with $\mathrm{n}-1$ degrees of freedom.

Application of Student's t-distribution
 Confidence Intervals of Mean Performance Measures

Suppose that we perform a limited number, n, of replications of a simulation, obtaining some performance measure X_{i} in the $i^{\text {th }}$ replication. The sequence $\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots . \mathrm{X}_{\mathrm{n}}\right\}$ are independent \& identically-distributed (i.i.d.) random variables, but the mean and variance are unknown

How good an estimate of the true mean is the sample mean?

Given an α, we want β such that the probability that μ is in the confidence interval

$$
\bar{X} \pm \beta \text {, i.e., } \quad \mu \in[\bar{X}-\beta, \quad \bar{X}+\beta]
$$

to be at least $1-\alpha$, i.e.,

$$
P\{|\bar{X}-\mu|>\beta\} \leq \alpha
$$

The sample variance is

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

Clearly, the larger the sample variance, the less confident we can be that \bar{X} is a good estimate of μ, i.e., the larger we can expect to be β.

We estimate the expected performance of the system by the sample mean

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

If we use more replications (i.e., larger n), we would expect a better estimate, of course.

What can we say about the true expected value μ of the performance X of the simulated system?

Student's t-dilistribution

The appropriate value of β is chosen so that, for the t-distribution with n-1 degrees of freedom,

$$
P\left\{\left|t_{n-1}\right|>\beta\right\}=P\left\{t_{n-1}>\beta \quad \text { OR } t_{n-1}<\beta\right\}=\alpha
$$

\leftarrow The total shaded area is α.

There are tables available for various degrees of freedom k and probabilities $\alpha=10 \%, 5 \%, 1 \%, 0.1 \%$, etc.

Example: Suppose that we perform 10 simulations, and obtain the following average values of X :

4.58578
4.56717
4.99381
5.43874
4.9137
4.41366
5.28951
4.96028
5.70154
Average
4.82989
4.96941

The sample variance is $\mathrm{S}^{2}=0.149982 \Rightarrow \mathrm{~S}=0.387275$
How close to the true mean μ of X is this sample mean 4.96941?

Sampling Distributions
2/15/2002
page 13 of 15

Choose $\alpha=5 \%$. Consulting a table of Student's t-distribution, we find that, for $n-1=9$ degrees of freedom,

Degrees of freedom \mathbf{k}	$\alpha=$ $\mathbf{1 0 \%}$	$\alpha=$ $\mathbf{5 \%}$	$\alpha=$ $\mathbf{1} \%$
8	1.860	2.306	3.355
9	1.833	2.262	3.250
10	1.812	2.228	3.169

so that the confidence interval is $\left[\bar{X}-t_{5 \%, 9} \frac{S}{\sqrt{10}}, \bar{X}+t_{5 \%, 9} \frac{S}{\sqrt{10}}\right]$

