Introduction to QUEUEING:

- **M/G/1**
 - Arrival process is **Memoryless**, i.e., interarrival times have **Exponential** distribution with mean $1/\lambda$.
 - Single server
 - Service times are independent, identically-distributed, but not necessarily exponential. Mean service time is $1/\mu$ with variance σ^2.
 - Queue capacity is infinite

Steadystate Characteristics

A steadystate distribution exists if $\rho = \frac{\lambda}{\mu} < 1$; i.e., if service rate exceeds the arrival rate.

- $\pi_0 = 1 - \rho$ = probability that server is idle
- $1 - \pi_0 = \rho$ = probability that server is busy

There is no convenient formula for the probability of j customers in system when $j > 0$.

M/G/1

$$L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1 - \rho)}$$

average number of customers waiting

After calculating L_q, Little's Formula allows us to compute:

$$W_q = \frac{L_q}{\lambda}, \quad W = W_q + \frac{1}{\mu}$$

$$& L = \lambda W = L_q + \rho$$

For the **M/M/1** queue, the standard deviation equals the mean service time, i.e., $\sigma = \frac{1}{\mu}$.

Using these formulae for the **M/G/1** queueing system with $\sigma^2 = \frac{1}{\mu^2}$ will give results consistent with the formulae for **M/M/1**.