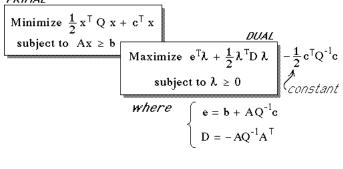


Hildeth & D'Espo

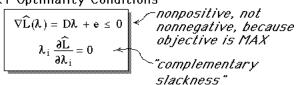
A Cyclic Coordinate Search Method applied to the QP Dual Problem: 1

PRIMAL



 $\begin{aligned} \text{Maximize} \quad e^T \lambda \ + \ \frac{1}{2} \, \lambda^T D \ \lambda \\ \text{subject to} \ \lambda \ \ge \ 0 \end{aligned}$

KKT Optimality Conditions



Hildeth & D'Espo

A Cyclic Coordinate Search Method applied to the QP Dual Problem:

Step 0 : Select an initial λ° , e.g., $\lambda_{i}^{\circ}=0$

Step 1 : Let i=1 and $\lambda = \lambda^{\circ}$

Step 2: Search for maximum in direction parallel to the λ_i -axis by fixing λ_i , $j\neq i$, and solving

$$\frac{\partial \widehat{L}}{\partial \lambda_i} = 0$$
 for λ_i a linear equation

⊕Dennis Bricker, U. of Iowa, 1998

Hildeth & D'Espo

Step 3: If $\lambda_i < 0$, then fix $\lambda_i = 0$.

Step 4 : Increment i. If i≤n, go to step 2.

⊕Dennis Bricker, U. of Iowa, 1998

Hildeth & D'Espo

Step 5 : If $\lambda \neq \lambda^{\circ}$, then let $\lambda^{\circ} = \lambda$, and go to step 1. (The current λ will satisfy the KKT conditions for the QP dual.)

⊕Dennis Bricker, U. of Iowa, 1998

Example #1

Example #2

Example #3 (portfolio problem)

⊕Dennis Bricker, U. of Iowa, 1998

EXAMPLE

 $\begin{array}{l} \text{Minimize } \frac{1}{2} \, x_1^{\, 2} + \frac{1}{2} \, x_1^{\, 2} - 2 x_1 - 2 x_2 \\ \text{subject to } & \begin{cases} 0 \, \leq \, x_1 \leq \, 1 \\ 0 \, \leq \, x_2 \leq \, 1 \end{cases} \end{array}$

that is, Minimize $\frac{1}{2}x^{\top}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}x + \begin{bmatrix} -2 \\ -2 \end{bmatrix}^{\top}x$ subject to $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

QP Problem

Maximize
$$\begin{bmatrix} 1 \\ 1 \\ -2 \\ -2 \end{bmatrix}^{T} \lambda + \frac{1}{2} \lambda^{T} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \lambda$$

subject to $\lambda \ge 0$

$$\begin{cases} \text{Maximize } \lambda_1 + \lambda_2 - 2\lambda_3 - 2\lambda_4 \\ -\frac{1}{2} \left[\lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \lambda_4^2 \right] + \lambda_1 \lambda_3 + \lambda_2 \lambda_4 \\ \text{subject to } \lambda_1 \ge 0, \lambda_2 \ge 0, \lambda_3 \ge 0, \lambda_4 \ge 0 \end{cases}$$

⊕Dennis Bricker, U. of Iowa, 1998

Hildeth & D'Espo

Start with $\lambda = \lambda^0 = (0,0,0,0)$

(i=1) Solve $-\lambda_1 + \lambda_3 + 1 = 0$ for λ_1 , with $\lambda_3 = 0$,

to get $\lambda_1 = 1$, so that $\lambda = (1,0,0,0)$

(i=2) Solve $-\lambda_2 + \lambda_4 + 1 = 0$ for λ_2 , with $\lambda_4 = 0$, to get $\lambda_2 = 1$, so that $\lambda = (1, 1, 0, 0)$

(*i=3*) Solve

 $\lambda_1 - \lambda_3 - 2 = 0$ for λ_3 , with $\lambda_1 = 1$, to get $\lambda_3 = -1 < 0$. The maximizing λ_3 is therefore 0, so that $\lambda = (1,1,0,0)$

@Dennis Bricker, U. of Iowa, 1998

 $\lambda^0 = \lambda = (1, 1, 0, 0)$

- (i=1) Solve $-\lambda_1 + \lambda_3 + 1 = 0$ for λ_1 , with $\lambda_3 = 0$, to get $\lambda_1 = 1$, so that $\lambda = (1,0,0,0)$
- Solve $-\lambda_2 + \lambda_4 + 1 = 0$ for λ_2 , with $\lambda_4 = 0$, to get $\lambda_2 = 1$, so that $\lambda = (1, 1, 0, 0)$
- $(\vec{i}=\vec{J})$ Solve $\lambda_1 \lambda_3 2 = 0$ for λ_3 , with $\lambda_1 = 1$, to get $\lambda_3 = -1 < 0 \Rightarrow \lambda_3 = 0$ so that $\lambda = (1, 1, 0, 0)$
- (i=4) Solve $\lambda_2 \lambda_1 2 = 0$ for λ_4 , with $\lambda_2 = 1$, to get $\lambda_4 = -1 < 0 \Rightarrow \lambda_4 = 0$ so that $\lambda = (1, 1, 0, 0)$

(end of cycle)

 $\nabla \widehat{L}(\lambda) = D\lambda + e = \begin{bmatrix} -\lambda_1 + \lambda_3 + 1 \\ -\lambda_2 + \lambda_1 + 1 \\ \lambda_1 - \lambda_3 - 2 \\ \lambda_2 - \lambda_4 - 2 \end{bmatrix}$ $\frac{\lambda_{1} \frac{\partial \widehat{L}}{\partial \lambda_{1}} = 0}{\lambda_{1} \frac{\partial \widehat{L}}{\partial \lambda_{1}} = 0}$ $\begin{cases}
\lambda_{1} \left(-\lambda_{1} + \lambda_{3} + 1 \right) = 0 \\
\lambda_{2} \left(-\lambda_{2} + \lambda_{4} + 1 \right) = 0 \\
\lambda_{3} \left(\lambda_{1} - \lambda_{3} - 2 \right) = 0
\end{cases}$

⊕Dennis Bricker, U. of Iowa, 1998

Hildeth & D'Espo

(i=4) Solve $\lambda_2 - \lambda_4 - 2 = 0$ for λ_4 , with $\lambda_2 = 1$, to get $\lambda_4 = -1 < 0$. The maximizing λ_4 is therefore 0, so that $\lambda = (1, 1, 0, 0)$

(end of cycle)

Since $(1,1,0,0) = \lambda \neq \lambda^0 = (0,0,0,0)$, i.e., λ was changed during the cycle, repeat the cycle.

@Dennis Bricker, U. of Iowa, 1998

Since $\lambda = \chi^0 = (1,1,0,0)$, i.e., λ was unchanged during the cycle, the algorithm has converged, and λ^* = (1.1,0,0) is the optimum of the QP dual problem.

recovery of primal optimal variables

$$x^{*}(\lambda^{*}) = Q^{-1} \begin{bmatrix} A^{T} \lambda^{*} - c \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \lambda^{*} - \begin{bmatrix} -2 \\ -2 \end{bmatrix})$$

$$\Rightarrow \begin{cases} x_{1}^{*} = -\lambda_{1}^{*} + \lambda_{3}^{*} + 2 &= 1 \\ x_{2}^{*} = -\lambda_{2}^{*} + \lambda_{4}^{*} + 2 &= 1 \end{cases}$$

⊕Dennis Bricker, U. of Iowa, 1998

Function

Consider the convex QP problem

$$\begin{array}{l} \mbox{Minimize} \\ 2\ x_1^2 + \ x_2^2 - 2x_1x_2 - 4x_1 - 6x_2 \\ \mbox{subject to} \\ \left\{ \begin{array}{l} x_1 + \ x_2 \leq \ 8 \\ - \ x_1 + 2 \ x_2 \leq \ 10 \\ x_1 \geq \ 0, \ x_2 \geq \ 0 \end{array} \right. \end{array}$$

Quadratic terms: $D = -A Q^{-1} A^{T} = -\begin{bmatrix} 1 & -2 & 1 & 1 & 0 \\ +1 & 0 & -2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 & 0 \\ -1 & -2 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} -5/2 & -2 & 1 & 3/2 \\ -2 & -5/2 & 1/2 & 3/2 \\ 1 & 1/2 & -1/2 & -1/2 \\ 3/2 & 3/2 & 1/2 & 1/2 \end{bmatrix}$ Computation of QP Dual Objective

@Dennis Bricker, U. of Iowa, 1998

$$\begin{array}{c} \textit{Linear} \\ \textit{terms:} \\ e = b + A \ Q^{-1}c \\ e = b + A \ Q^{-1}c \\ \end{array} = \begin{bmatrix} -8 \\ -10 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ +1 & -2 \\ +1 & 0 \\ 0 & +1 \end{bmatrix} \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} -4 \\ -6 \end{bmatrix} \\ \begin{bmatrix} -4 \\ -6 \end{bmatrix} \\ \begin{bmatrix} -8 \\ -10 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 13 \\ 11 \\ -5 \\ -8 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ -5 \\ -8 \end{bmatrix} \\ \end{bmatrix}$$

KKT Conditions

$$\begin{aligned} &D\lambda \, + e \, \leq \, 0 \\ \lambda \, \left[D\lambda \, + e \, \right] = 0 \\ &\lambda \geq \, 0 \end{aligned}$$

i.e.,
$$\begin{cases} \lambda_1 \left[-\frac{5}{2} \lambda_1 - 2\lambda_2 + \lambda_3 + \frac{3}{2} \lambda_4 + 5 \right] &= 0 \\ \lambda_2 \left[-2 \lambda_1 - \frac{5}{2} \lambda_2 + \frac{1}{2} \lambda_3 + \frac{3}{2} \lambda_4 + 1 \right] &= 0 \\ \lambda_3 \left[\lambda_1 + \frac{1}{2} \lambda_2 - \frac{1}{2} \lambda_3 - \frac{1}{2} \lambda_4 - 5 \right] &= 0 \\ \lambda_4 \left[\frac{3}{2} \lambda_1 + \frac{3}{2} \lambda_2 - \frac{1}{2} \lambda_3 - \lambda_4 - 8 \right] &= 0 \\ \lambda_1 &\geq 0, \lambda_2 \geq 0, \lambda_3 \geq 0, \lambda_4 \geq 0 \end{cases}$$

@Dennis Bricker, U. of Iowa, 1998

Hildeth & D'Espo

Either
$$\lambda_3 = 0$$

or $\lambda_3 = 2 \left[-5 + \lambda_1 + \frac{1}{2} \lambda_2 - \frac{1}{4} \lambda_4 \right] = -6$
Let $\lambda_3 = 0$
 $\lambda = (2,0,0,0)$

Either
$$\lambda_4 = 0$$

or $\lambda_4 = \left[-8 + \frac{3}{2} \lambda_1 + \frac{3}{2} \lambda_2 - \frac{1}{2} \lambda_3 \right] = -5$
Let $\lambda_4 = 0$
 $\lambda = (2,0,0,0)$

⊕Dennis Bricker, U. of Iowa, 1998

$$\begin{aligned} \mathbf{x}^*(\lambda^*) &= \mathbf{Q}^{-1} \left[\mathbf{A}^\mathsf{T} \lambda^* - \mathbf{c} \right] \quad \text{where} \qquad \lambda^* = (2,0,0,0) \\ \begin{bmatrix} \mathbf{x}_1^* \\ \mathbf{x}_2^* \end{bmatrix} &= \begin{bmatrix} -\lambda_1^* - \frac{1}{2} \lambda_2^* + \frac{1}{2} \lambda_3^* + \frac{1}{2} \lambda_3^* + \frac{1}{2} \lambda_4^* + 5 \\ -3/2 \lambda_1^* - 3/2 \lambda_2^* + \frac{1}{2} \lambda_3^* + \lambda_4^* + 8 \end{bmatrix} \\ &= \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Maximize
$$\frac{1}{2} \lambda^T D \lambda + e^T \lambda$$

subject to $\lambda \ge 0$

QP Dual Problem

$$\label{eq:maximize} \begin{array}{ll} \text{Maximize} & \frac{1}{2}\left\{-\frac{5}{2}\lambda_{1}^{2}-\frac{5}{2}\lambda_{2}^{2}+\frac{1}{2}\lambda_{3}^{2}+\lambda_{4}^{2}\right.\\ & \left.-4\lambda_{1}\lambda_{2}+2\lambda_{1}\lambda_{3}+3\lambda_{1}\lambda_{4}\right.\\ & \left.+2\lambda_{2}\lambda_{3}+3\lambda_{2}\lambda_{4}-\lambda_{3}\lambda_{4}\right.\right\}\\ & \left.+5\lambda_{1}+\lambda_{2}-5\lambda_{3}-8\lambda_{4}\right.\\ \text{subject to} & \lambda\geq0 \end{array}$$

⊕Dennis Bricker, U. of Iowa, 1998

Hildeth & D'Espo Let $\lambda = (0,0,0,0)$

$$_{\rm et}$$
 $\lambda = (0,0,0,0)$

Either
$$\lambda_1 = 0$$

or $\lambda_1 = \frac{2}{5} \left[5 - 2\lambda_2 + \lambda_3 + \frac{3}{2} \lambda_4 \right] = 2$
Let $\lambda_1 = 2$ $\lambda = (2,0,0,0)$

Either
$$\lambda_2 = 0$$

or $\lambda_2 = \frac{2}{5} \left[1 - 2\lambda_1 + \frac{1}{2} \lambda_3 + \frac{3}{2} \lambda_4 \right] = -\frac{6}{5}$
Let $\lambda_2 = 0$ $\lambda = (2,0,0,0)$

@Dennis Bricker, U. of Iowa, 1998

$$\lambda = (2,0,0,0) \neq \lambda^{0} = (0,0,0,0)$$

Therefore, repeat the cycle.

(This will leave λ unchanged, so that $\chi^* = (2,0,0,0)$ satisfies the KKT conditions and is therefore optimal for the QP dual problem.)

The primal optimal solution is then recovered $\mathbf{x}^* (\lambda^*) = \mathbf{O}^{-1} [\mathbf{A}^\mathsf{T} \lambda^* - \mathbf{c}]$

@Dennis Bricker, U. of Iowa, 1998

EXAMPLE

"Optimal

Portfolio

Problem"

Minimize $x^T \begin{bmatrix} 12 & -5.6 & 23 \\ -5.6 & 2.8 & -12 \\ 23 & -23 & 55.2 \end{bmatrix} x$ subject to $x_1 + x_2 + x_3 \le 10000$ $0.09x_1 + 0.07x_2 + 0.10 x_3 \ge 800$ $x_i \ge 0, j=1,2,3$

K⊅

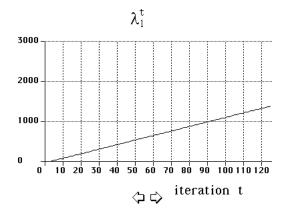
Hessian Matrix of Objective

i 1 2 3 C[i] 0 0 0 Linear Cost Coefficients

1 1 1 1 ≤ 10000 -0.09 -0.07 -0.1 ≤ -800 Constraint Coefficients

plus nonnegativity constraints: X ≥ 0

iteration	Lambda					
1 2 3 4 5 6 7 8 9 10 11 12 \$120 121	0.000E0 1.137E1 2.273E1 3.410E1 4.546E1 5.682E1 9.091E1 1.023E2 1.136E2 1.250E2 \$\frac{1}{2}\$	3.133E3 3.282E3 3.282E3 3.581E3 3.581E3 3.730E3 4.028E3 4.177E3 4.326E3 4.475E3 4.625E3 4.74E3 2.082E4 2.097E4 2.111E4	0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0	0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0	0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0 0.000E0	
123 124	1.381E3 1.393E3	2.126E4 2.141E4	0.000E0 0.000E0	0.000E0 0.000E0	0.000E0 0.000E0	
125 1.404E3						



The QP dual is $\max_{\substack{\text{Max } (E+.\times L) + .5\times (@L)+.\times D+.\times L\\ \text{subject to } L\geq 0}} \max_{\substack{t\geq 0\\ \text{where } L \text{ is the vector of dual variables}}}$

The D matrix (Hessian of dual objective) is

8.229461	-0.2553307 -0.6283286			3.5835694 -0.2726628 -0.4957507
	-2.4502124 -0.2726628	-5.8640226 -0.4957507	-23.618980 -2.691218	-2.6912181 -0.3966005

The E vector (linear coefficients of dual objective) is

-10000 800 0 0 0

The Kuhn-Tucker conditions for the dual are:

SOLUTION

(after 125 iterations, without converging!)

Portfolio Example

Primal Variables: x = 1992.79439 7655.682777 847.5071055 y = ~495.9842719 5.684341886E~13 Slack:

Dual Variables: Lambda = 1392.503289 21409.73162 0 0 0

Objective Function: 1256046.34

The optimal primal solution is (5000,5000,0)

