Splitting \& Merging of Poisson Processes Poisson Process with rate λ Consider a Poisson process with arrival rate λ and "split" it as follows: each arrival is colored red with probability p , and blue with probability $q=1-p$. Then the process of red arrivals is a Poisson process with rate $\mathrm{p} \lambda$, and the process of blue arrivals is a Poisson process with rate $\mathrm{q} \lambda$. Example: if the arrival of vehicles at an intersection is Poisson with rate 20/minute, and 30% of the vehicles are trucks, then the arrival of trucks is a Poisson process with rate $0.3 \times 20 /$ minute $=$ 6/minute.	Merging: Conversely, consider two Poisson processes with rates λ_{1} and λ_{2}, and define a new process with an arrival whenever an arrival occurs in either process. This new process is also Poisson, with arrival rate $\lambda_{1}+\lambda_{2}$. Example: the arrival of customers wishing to make a deposit at a bank teller window is Poisson with rate 9/hour, and the arrival of customers wishing to make a withdrawal is Poisson with rate 6/hour. The aggregate arrival of customers at this bank teller window is Poisson, with rate $15 / h o u r$.
Minimum of exponentially-distributed random variables Suppose that \mathbf{T}_{1} and \mathbf{T}_{2} are independent exponentially-distributed random variables with parameters λ_{1} and λ_{2}, respectively.	Think of \mathbf{T}_{1} and \mathbf{T}_{2} as the inter-arrival times of two Poisson processes, and merge them. Then the time of the next arrival of the merged process is $\mathbf{T}=\operatorname{minimum}\left\{\mathbf{T}_{1}, \mathbf{T}_{2}\right\}$
What is the distribution of the new random variable \mathbf{T} defined as $\mathbf{T}=\min \left\{\mathbf{T}_{1}, \mathbf{T}_{2}\right\} ?$	As we have seen, therefore, \mathbf{T} has an exponential distribution with parameter $\lambda_{1}+\lambda_{2}$.
Example: T_{1} and T_{2} are the lifetimes of two light bulbs, and T is the time at which the first failure occurs.	
Properties of Poisson Processes page 3	Properice of Poisson Processes page 4

