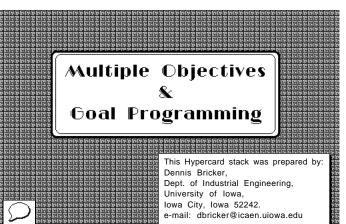
and



Suppose that we have as a goal the satisfying of a linear constraint

 $a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n \cong b_1$

We can introduce deviational variables (essentially slack & surplus variables):

$$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n + u_i - v_i = b_i$$

 $u_i \ge 0$ (underachievement)
 $v_i \ge 0$ (overachievement)
use as an objective: Minimize $u_i + v_i$

If we have several such goals, we can minimize the sum of **all** the deviational variables:

 $\begin{array}{l} \text{Minimize } u_1 + v_1 + \ldots + u_m + v_m \\ \text{s.t.} \\ a_{11}X_1 + a_{12}X_2 + \ldots + a_{1n}X_n + u_1 - v_1 = b_1 \\ a_{21}X_1 + a_{22}X_2 + \ldots + a_{2n}X_n + u_2 - v_2 = b_2 \\ \vdots \\ a_{m1}X_1 + a_{m2}X_2 + \ldots + a_{1n}X_n + u_m - v_m = b_m \\ X_{j} \ge 0 \; \forall j, \; u_1 \ge 0 \; \& \; v_j \ge 0 \; \forall i \end{array}$

Deviational Variables

Recall that to convert an inequality to an equality constraint, we introduce slack or surplus variables:

	$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n \leq b_i$
becomes	a _{i1} X ₁ + a _{i2} X ₂ + + a _{in} X _n + S _i = b _i
	Sī≥O (Sīis a slack variable)
while	$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n \ge b_i$
becomes	$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n - S_i^* = b_i$ $S_i^* \ge 0$ (S_i^* is a surplus variable)

As alternatives, we could

minimize under achievement alone, i.e. Min $\,\,u_i$ or

minimize overachievement alone, i.e., Min vi

At the optimal solution, at most one of each pair of deviational variables (u_i, v_i) will be basic (i.e., nonzero).

For example, although u_i =5, v_i =2 will give a deviation of u_i - v_i =3 (a net underachievement), the associated cost is $u_i + v_i$ = 7 which is more than the cost (namely, 3) of the equivalent choice u_i =3, v_i =0.

Example: designing an educational program

Decision variables: X₁ = hours of classroom work X₂ = hours of laboratory work Suppose that each hour of work involves the following small--group experience and individual problemsolving experience

		classroom	laboratory
9	small-group	12 minutes	29 minutes
i	ndi∨idual	19 minutes	11 minutes

System constraint ("hard constraint"): total program hours limited to 100

Goal constraints ("soft constraints"):

• each student should spend as close as possible to 25% of the maximum program time working in small groups

 each student should, if possible, spena one-third of the time on individual problem-solving activities

19X ₁ + 11X _{2 ≅} 2000 (minutes)
--

The goal programming model:

Minimize	$\cup_1 + \vee_1 +$	- U ₂ + V ₂	
s.t. X, +	X ₂	≤ 100	total hrs
		$V_1 = 1500$	small-gp individual
19 X ₁ +	$11 X_2 + U_2$	$_2 - V_2 = 2000$	
X _j ≥0, j=	:1,2;U _i ≥0	, i=1,2; $V_i \ge 0$,	i=1,2

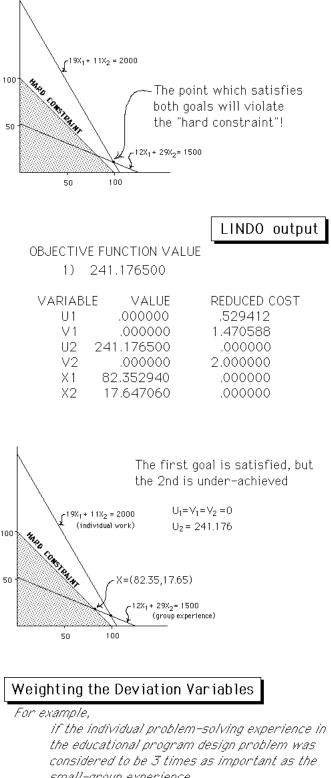
RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT COEF	ALLOWABLE INCREASE	ALLOWABLE DECREASE
U1	1.000000	INFINITY	.529412
V1	1.000000	INFINITY	1.470588
U2	1.000000	1.125000	1.000000
V2	1.000000	INFINITY	2.000000
X1	.000000	14.448280	9.000000
X2	.000000	9.000000	25.000000

Weighting the Deviation Variables

To reflect a preference for under- &/or overachievement of the various goals, one may weight the deviation variables accordingly.



small-group experience,

an underachievement was to be penalized by 5 times the penalty for overachievement, then the objective would become

Minimize $5U_1 + V_1 + 15U_2 + 3V_2$

LINDO output

In this case, only classroom activity

12X₁+ 29X₂= 1500 (group experience)

~X=(100,0)

is scheduled, and both goals are under-

U1=300, U2=100

V1=V2=0

OBJECTIVE FUNCTION VALUE

1) 3000.00000

VARIABLE	VALUE	REDUCED COST
U1	300.000000	.000000
V 1	.000000.	6.000000
U2	100.000000	.000000
V2	.000000.	18.000000
X1	100.000000	.000000
X2	.000000	35.000000

Constructing a Trade-Off Curve

In the educational design problem, with only 2 goal constraints, one may use the *parametric programming* facility of LINDO to construct a trade-off curve:

Maximize small-group experience (Tg) subject to total program time ≤ 100 hrs individual problem-solving time ≥Tj where Tj varies from 0 to 2000

MAX 12 X1 + 29 X2 SUBJECT TO 2) X1 + X2 <= 100 3) 19 X1 + 11 X2 >= 0 FND

achieved.

19X1+ 11X2 = 2000

PRATO CONSTRAINT

50

100

50

(individual work)

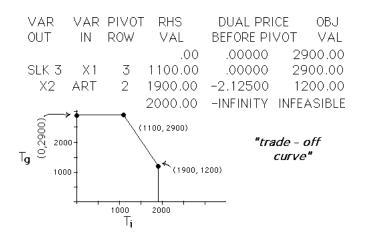
100

OBJECTIVE FUNCTION VALUE

1) 2900.00000

VARIABL	e value	REDUCED COST
X1	.000000	17.000000
X2	100.000000	.000000

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	.000000	29.000000
3)	1100.000000	.000000



RIGHTHAND SIDE RANGES

	CURRENT	ALLOWABLE	ALLOWABLE
ROW	RHS	INCREASE	DECREASE
2	100.000000	INFINITY	100.000000
3	.000000	1100.000000	INFINITY