

WNeiburll

Distribution

© Dennis Bricker
© Dennis Bricker
Dept of Mechanical \& Industrial Engineering
The University of Iowa

MLE: Weibull

$$
L(t ; k, u)=\frac{k^{n}}{u^{n k}}\left[\prod_{i=1}^{n} t_{i}^{k-1}\right] \exp \left\{-u^{-k} \sum_{i=1}^{n} t_{i}^{k}\right\}
$$

We wish to choose values of $\mathrm{u} \& \mathrm{k}$ which maximize L (or equivalently, the logarithm of L), i.e., which make the observed values of t as large as possible!

The log-likelihood function is

$$
\ln L(t ; k, u)=n \ln k-n k \ln u+(k-1) \sum_{i=1}^{n} \ln t_{i}-u^{-k} \sum_{i=1}^{n} t_{i}^{k}
$$

Weibull Distribution:

pdf: $\quad f(t)=\frac{k}{u}\left(\frac{t}{u}\right)^{k-1} \exp \left\{-\left(\frac{t}{u}\right)^{k}\right\}$
Suppose $t_{1}, t_{2}, \ldots t_{n}$ are times to failure of a group of n mechanisms.

The likelihood function is

$$
\begin{aligned}
L(t ; k, u) & =\prod_{i=1}^{n} \frac{k}{u}\left(\frac{t_{i}}{u}\right)^{k-1} \exp \left\{-\left(\frac{t_{i}}{u}\right)^{k}\right\} \\
& =\frac{k^{n}}{u^{n k}}\left[\prod_{i=1}^{n} t_{i}^{k-1}\right] \exp \left\{-u^{-k} \sum_{i=1}^{n} t_{i}^{k}\right\}
\end{aligned}
$$

MLE: Weibull

The optimality conditions for the maximum of the loglikelihood function are

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial u} \ln L(t ; u, k)=0 \\
\frac{\partial}{\partial k} \ln L(t ; u, k)=0
\end{array}\right.
$$

This gives us a pair of nonlinear equations in two unknowns ($u \& k$):

$$
\left\{\begin{array}{l}
-\frac{n \hat{k}}{\hat{u}}+\hat{k} \hat{u}^{-\hat{k}-1} \sum_{i=1}^{n} t_{i}^{\hat{k}}=0 \\
\frac{n}{\hat{k}}-n \ln \hat{u}+\sum\left(\frac{t_{i}}{\hat{u}}\right)^{\hat{k}} \ln \left(\frac{t_{i}}{\hat{u}}\right)=0
\end{array}\right.
$$

But the left side of the first equation can be factored:

$$
-\frac{n \hat{k}}{\hat{u}}+\hat{k} \hat{u}^{-\hat{k}-1} \sum_{i=1}^{n} t_{i}^{\hat{k}}=0 \Rightarrow \hat{k} \hat{u}^{-1}\left[-n+\hat{u}^{-\hat{k}} \sum_{i=1}^{n} t_{i}^{\hat{k}}\right]=0
$$

Since the first factor cannot be zero, we set the second factor equal to zero and solve for \hat{u} in terms of \hat{k} :

$$
\hat{u}=\left(\frac{1}{n} \sum_{i=1}^{n} t_{i}^{\hat{k}}\right)^{1 / 1}
$$

Eliminating \hat{u} in the second equation by substituting the first, we get the following nonlinear equation in \hat{k} alone:

$$
\frac{1}{\hat{k}}-\frac{\sum_{i=1}^{n} t_{i}^{\hat{k}} \ln t_{i}}{\sum_{i=1}^{n} t_{i}^{\hat{k}}}+\frac{1}{n} \sum_{i=1}^{n} \ln t_{i}=0
$$

This can now be solved by, for example, the secant method.

The CDF of the Weibull distribution is

$$
\left.F(t ; k, u)=1-\exp \left\{-\left(\frac{t}{u}\right)^{k}\right)\right\}
$$

and so the likelihood function is

$$
\begin{aligned}
L(t ; k, u) & =\left[\exp \left\{-\left(\frac{\tau}{u}\right)^{k}\right\}\right]^{n-r} \times \prod_{i=1}^{r} \frac{k}{u}\left(\frac{t_{i}}{u}\right)^{k-1} \exp \left\{-\left(\frac{t_{i}}{u}\right)^{k}\right\} \\
& =\frac{k^{r}}{u^{n k}}\left[\prod_{i=1}^{r} t_{i}^{k-1}\right] \exp \left\{-u^{-k}\left[\sum_{i=1}^{r} t_{i}^{k}+(n-r) \tau^{k}\right]\right\}
\end{aligned}
$$

Maximum Likelihood Estimation

 with "censored" dataSuppose that an experiment was terminated at time τ after only r of the n units in a lifetest had failed. This is accounted for by defining the likelihood as

$$
L(t, \theta)=[1-F(\tau ; \theta)]^{n-r} \times \prod_{i=1}^{r} f\left(t_{i} ; \theta\right)
$$

The log-likelihood function is therefore

$$
\ln L(t ; \theta)=(n-r) \ln [1-F(t ; \theta)]+\sum_{i=1}^{r} \ln f\left(t_{i} ; \theta\right)
$$

The log-likelihood function is

$$
\ln L(t ; k, u)=r \ln k-n k \ln u+(k-1) \sum_{i=1}^{r} \ln t_{i}-u^{-k}\left[\sum_{i=1}^{r} t_{i}^{k}+(n-r) \tau^{k}\right]
$$

The optimality conditions for a maximum of the log-likelihood at (\hat{k}, \hat{u}) are

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial u} \ln L(t ; \hat{u}, \hat{k})=0 \\
\frac{\partial}{\partial k} \ln L(t ; \hat{u}, \hat{k})=0
\end{array}\right.
$$

A result similar to the uncensored case can be derived:

$$
\hat{u}=\left(\frac{\left.\sum_{i=1}^{r} t_{i}^{\hat{k}}+(n-r) \tau^{\hat{k}}\right)^{1 / \hat{k}}}{n}\right)
$$

and

$$
\frac{1}{\hat{k}}-\frac{\sum_{i=1}^{r} t_{i}^{\hat{k}} \ln t_{i}+(n-r) \tau^{\hat{k}} \ln \tau}{\sum_{i=1}^{r} t_{i}^{\hat{k}}+(n-r) \tau^{\hat{k}}}+\frac{1}{r} \sum_{i=1}^{r} \ln t_{i}=0
$$

This second equation can be solved for \hat{k} by the secant method, and
then \hat{k} can be used to calculate \hat{u} by the first equation.

MLE: Weibull
3/1/2002

A plot of Y vs X , obtained by the transformations:
$Y=\log \log \frac{1}{R(t)}$ where $R(t)$ is the observed fraction of the
devices which have survived until time t, and
$X=\log t$
should be a line if the Weibull model were to fit the data perfectly.

EXAMPLE: Twenty devices are tested simultaneously until 500 days have passed, at which time the following failure times (in days) have been recorded:

$$
\begin{array}{r}
31.5 \\
74.0 \\
87.5 \\
100.1 \\
103.3 \\
181.9 \\
279.9 \\
297.1 \\
462.5 \\
465.4
\end{array}
$$

Estimate the lifetime for which the device is 90% reliable.

MLE: Weibull
page 10

LEAST SQUARES REGRESSION RESULTS:

u (scale parameter) $=653.504$
k (shape parameter) $=0.908313$
so that
mean $=\quad 630.396$
standard deviation $=754.336$

Note: this is determined by minimizing the sum of the squared errors in the linearized version of $F(t)=1-e^{-(t / u)^{k}}$, namely $y=k x-k \ln u$ where $x=\ln t \& y=\ln \ln \frac{1}{R(t)}$,
rather than in the original equation!

If we use these parameters found by linear regression, the reliability function would have the values:

$\frac{t}{}$	$\frac{F(t)}{0.01}$	$\frac{1-F(t)}{0.99}$
4.12824	0.02	0.98
8.90435	0.03	0.97
13.993	0.04	0.96
19.3163	0.05	0.95
24.837	0.06	0.94
30.5337	0.07	0.93
36.3925	0.08	0.92
42.4042	0.09	0.91
48.5623	0.10	0.90
54.8622	0	

Hence, according to this model, 90% of the devices should be operating at 54.8 (approximately 55) days.

MLE: Weibull

SECANT METHOD

If our first two "guesses" at the value of k are 0.5 and 2.0, then we determine that

$$
g(0.5)=1.13739 \& \text { and } g(2.0)=-0.618085 .
$$

Maximum Likelihood result:

Solving the nonlinear equation for k :

$$
g(k)=\frac{1}{\hat{k}}-\frac{\sum_{i=1}^{r} t_{i}^{\hat{k}} \ln t_{i}+(n-r) \tau^{\hat{k}} \ln \tau}{\sum_{i=1}^{r} t t_{i}^{\hat{k}}+(n-r) \tau^{\hat{k}}}+\frac{1}{r} \sum_{i=1}^{r} \ln t_{i}=0
$$

MLE: Weibull

The secant joining the two points on the graph of g cross the k axis at 1.47187 .

We then repeat, with the 2 improved "guesses" $k=0.5$ and $\mathrm{k}=1.47187$.

SECANT METHOD RESULTS:	k	error	Once we determine the value of \hat{k} which maximizes the likelihood function, then the corresponding value of the parameter \hat{u} is found by	
	0.5	1.13739		
	2.0	-0.618085		
	1.47187	-0.397478		
	0.5203	1.05148	$\hat{u}=\left(\frac{\left.\sum_{i=1}^{r} t_{i}^{\hat{k}}+(n-r) \tau^{\hat{k}}\right)^{1 / \hat{k}}}{n}\right)$	
	1.21083	-0.217582		
	1.09244	-0.108608		
	0.974445 0.996528	0.025006 -0.00227829		
	0.994684	-0.0000438242		
	0.994648	$7.83302 \mathrm{E}^{-8}$		
	0.994648	${ }^{-2} 2.68896 \mathrm{E}^{-12}$		

Maximum Likelihood result:

u (scale parameter) $=710.339$,
$k($ shape parameter $)=0.994648$

t	$\mathrm{F}(\mathrm{t})$	$1-\mathrm{F}(\mathrm{t})$
6.9646	0.01	0.99
14.0526	0.02	0.98
21.2337	0.03	0.97
28.5026	0.04	0.96
35.8579	0.05	0.95
43.2993	0.06	0.94
50.8272	0.07	0.93
58.4427	0.08	0.92
66.1467	0.09	0.91
73.9408	0.10	0.90

According to this model, then, 90% of the devices should be operating at 73.94 (approximately 74) days.

