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Suppose that we have observed values t1, t2, … tn of a
random variable T.

Suppose also that the distribution of T is known to belong

to a certain type  (e.g., exponential, normal, etc.)

but the vector ( )1 2, , pθ = θ θ θ… of unknown parameters

associated with it is unknown (where p is the number of

unknown parameters).
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Let the density function be written as ( );f t θ .

For example, if T has Normal distribution,

( )
21 1; , exp

22
tf t

 − µ  µ σ = −  σσ π    

(where 1θ =µ & 2θ = σ have yet to be determined.)

We want to estimate the unknown parameters  by choosing

those values of θ which make the likelihood of the observed

values as large as  possible.
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Other alternative methods:

method of moments: choose θ so that the moments of

( );f t θ are equal to those of the sample (e.g., match the

sample mean and sample variance).
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use regression analysis, i.e., curve-fitting, to choose θ so

as to minimize the sum of the squared errors in the

nonlinear system of equations:

( )
( )

( )

1

2

1 ;

2 ;

;n

F tn
F tn

n F tn

 = θ

 = θ




= θ

#
where F  is the CDF of the dist’n

(This is generally an unconstrained nonlinear minimization problem which must
be solved by an iterative algorithm, although often transformations can be
applied to obtain a linear system which can then be solved easily.)
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MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Consider first the case in which T is discrete.

A simple example, with a not-at-all surprising result:

Suppose that a Bernouilli random variable is sampled,

i.e., ti ∈ {0,1} for each i=1,2,...n.

The number of “successes” is known to have a binomial

distribution with parameter p = probability of “success”.

Suppose that the number of successes in the sample,

i.e.,
1

n

i
i

t
=
∑ , be k.

What then should be our estimate of p ?
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The probability, or likelihood, of k successes in n trials, if T

is a Bernouilli random variable, is

( ) ( )1 n kkn
L p p p

k
− 

= − 
 

(which has been written as a function of the unknown
parameter p.)

The maximum likelihood estimate of p is the value which

maximizes the function L(p).

solution:  consider the stationary points of L:

( )1 11 ( )(1 ) ( 1) 0n kk k n kndL kp p p n k p
kdp

−− − −   = − + − − − =    
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( ) ( )11 1 1 ( ) 0n kkndL p p k p p n k
kdp

− −− 
 = − − − − =   

 

One of the factors must be zero in the solution, so the three

solutions are:

0p =

( )1 0    1p p− = ⇒ =

or

(1 ) ( ) 0    0 kk p p n k k kp np kp k np p n− − − = ⇒ − − + = − = ⇒ =

Obviously the first two solutions, i.e. p = 0 & 1, do not

maximize the function L,  while the third solution is what

we would have expected to be the MLE!
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Consider now the case in which T does not have a discrete

distribution, and ( );f t θ is its density function.

Since the observed values are independent, the likelihood
function ( ),L t θ is the product of the probability density

function evaluated at each observed value:

( ) ( )
1

, ;
n

i
i

L t f t
=

θ = θ∏
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The maximum likelihood estimator θ̂ is found by maximizing

( ),L t θ with respect to θ.   Thus θ̂ corresponds to the distribution

that is most likely to have yielded the observed data  t1, t2, … tn .

The problem

( )1, ;nMaximize L t t
θ

θ…

is a nonlinear optimization problem which might be solved

by any appropriate NLP algorithm (Newton or quasi-Newton

methods, the conjugate gradient method, etc.)
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For computational convenience, it’s usually preferable to

maximize the logarithm of the maximum likelihood

(which will yield the same maximizing θ̂):

( )1ln , ;nMaximize L t t
θ

θ…

i.e., because ( ) ( ) ( )
11

ln ;  = ln ; ln ;
n n

i i
ii

L t f t f t
==

θ θ = θ∑∏
we solve the problem:

( )
n

i=1

ln ;iMaximize f t
θ

θ∑
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Example:  Exponential Distribution

(another not-so-surprising result)

The probability density function (pdf) of the exponential

distribution with parameter λ is

( ); tf t e−λλ = λ
We have a set of n observations t1, t2, … tn.  What is the

value of the parameter λ which makes this set of

observations most likely?

Sample data: Times to failure of six electronic components

are (in hours):

25, 75, 150, 230, 430, and 700.
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Solution: The likelihood function is

( )1
11

, ; expi

n n
t n

n i
ii

L t t e t−λ

==

 λ = λ = λ −λ 
 

∑∏…

The logarithm of the likelihood is

( )
1

ln ; log
n

i
i

L t n t
=

λ = λ − λ∑
which has derivative

( )
1

;
n

i
i

d nL t t
d =

λ = −
λ λ ∑

In the case, then, we can solve the nonlinear optimization

problem (with one variable) by finding a stationary point,

i.e., a value of λ for which the above derivative is zero.
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( )
1

1

1

; 0ˆ

1 1
ˆ

ˆ

n

i
i

n

i
i

n

i
i

d nL t t
d

t
n
n

t

=

=

=

λ = − =
λ λ

⇒ =
λ

⇒ λ =

∑

∑

∑

That is, in the case of the exponential distribution, the MLE

is (surprise!) simply

the reciprocal of the average of the observed values.

That is, for the sample data,

( )
6 6ˆ 0.0037267 / .

25+75+150+230+430+700 1610
failures failures failures hr

hrs hrs
λ = = =
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In the case of the normal distribution (with two parameters,

µ & σ), the optimality conditions for maximum of the log

likelihood is a pair of nonlinear equations, but again they

can be solved in closed form, and the results are as one

might expect:

• the MLE for µ is the average of the observations, and

• the MLE for σ is the square root of the sample variance.

In general, however, one cannot find a closed-form solution for the

maximim likelihood estimator(s), requiring an iterative algorithm.

(For example, MLE for Weibull & Gumbel distributions.)
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Maximum Likelihood Estimation
with “censored” data

Suppose that an experiment was terminated at time τ after

only r of the n units in a lifetest had failed.  This is

accounted for by defining the likelihood as

( ) ( ) ( )
1

, 1 ; ;
rn r

i
i

L t F f t
−

=

 θ = − τ θ × θ  ∏
since

( )1 ;
n r

F
−

 − τ θ  is the probability that the n−r units survive

until time τ.
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Since ( ) ( ) ( )
1

, 1 ; ;
rn r

i
i

L t F f t
−

=

 θ = − τ θ × θ  ∏
the log-likelihood function is therefore

( ) ( ) ( ) ( )
1

ln ; ln 1 ; ln ;
r

i
i

L t n r F t f t
=

 θ = − − θ + θ  ∑

Generally, this is maximized either

• by solving the optimality conditions

( )ln ; 0     for   1,2,
i

L t i p∂ θ = =
∂θ

…

• by an iterative optimization algorithm (e.g. Quasi-

Newton)


