Single-payment factors

Let
- \(P \) = original investment
- \(r \) = rate of interest per period
- \(n \) = number of periods
- \(S_n \) = value of investment after \(n \) periods

Then
\[
S_n = (1 + r)^n P
\]

single-payment compound-amount factor

Uniform Series of Payments

Consider a sequence of \(n \) uniform periodic payments, \(R \), earning interest at rate \(r \) per period, compounded at the end of each period. Then the accumulated value after \(n \) periods is
\[
S_n = \frac{(1 + r)^n - 1}{r} R
\]

uniform-series compound-amount factor

Conversely,

the amount of each payment \(R \) required to accumulate a sum \(S \) after \(n \) periods at interest rate \(r \) is
\[
R = \frac{r}{(1 + r)^n - 1} S_n
\]

sinking-fund deposit factor

Finally, expressing a present amount \(P \) as an equivalent sequence of \(n \) uniform payments \(R \) gives
\[
R = \frac{r(1 + r)^n}{(1 + r)^n - 1} P
\]

capital recovery factor

<table>
<thead>
<tr>
<th>Given</th>
<th>Find</th>
<th>by multiplying with the</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(S_n)</td>
<td>single-payment compound-amount factor (spcaf)</td>
</tr>
<tr>
<td>(S_n)</td>
<td>(P)</td>
<td>single-payment present-worth factor (sppwf)</td>
</tr>
<tr>
<td>(R)</td>
<td>(S_n)</td>
<td>uniform-series compound-amount factor (uscaf)</td>
</tr>
<tr>
<td>(S_n)</td>
<td>(R)</td>
<td>sinking-fund deposit factor (sdf)</td>
</tr>
<tr>
<td>(R)</td>
<td>(P)</td>
<td>uniform-series present-worth factor (uspw)</td>
</tr>
<tr>
<td>(P)</td>
<td>(R)</td>
<td>capital-recovery factor (crf)</td>
</tr>
</tbody>
</table>