Example

A company must complete 3 jobs on 4 machines, requiring the following processing times:

<table>
<thead>
<tr>
<th>Job</th>
<th>Machine 1</th>
<th>Machine 2</th>
<th>Machine 3</th>
<th>Machine 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>--</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>20</td>
<td>--</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>35</td>
<td>28</td>
<td>--</td>
</tr>
</tbody>
</table>

A job cannot be processed on machine j unless for all i,j, the job has completed processing on machine i.

The "flow time" of a job is the difference between the completion time and the time it begins its first stage of processing.

The company wishes to minimize the average flow time of the three jobs.

This is a project scheduling problem, with some added restrictions and a different objective.

There are 8 tasks to be performed (processing of jobs on machines) with precedence restrictions.

Label the tasks

\(i \) = processing of job j on machine i

Exactly one arrow of each pair (with dotted lines) is to be selected!

For example, tasks 11 and 12 cannot be in progress simultaneously; one of them must precede the other. But which?

Decision Variables

We will define binary variables to represent this decision:

\[x_{ij} = \begin{cases} 1 & \text{if job } j \text{ is the first to be processed on machine } i \\ 0 & \text{otherwise} \end{cases} \]

Decision Variables

In addition to the binary variables, we need to define variables as in the LP formulation of the critical path problem:

\[t_{ij} = \text{starting time of task } ij \]
Objective

Flow time of a job is the difference between the completion time of the last task of the job, and the start time of the first task of the job. For example, for job #1,

\[
\begin{align*}
t_{41} + 30 &= \text{completion time of task 41} \\
t_{11} &= \text{start time of task 11} \\
(t_{41} + 30) - t_{11} &= \text{Flow time for job #1}
\end{align*}
\]

Objective

Minimize average flow time:

\[
\text{Minimize } \frac{(t_{41} - t_{11}) + (t_{42} - t_{12} + 18) + (t_{33} - t_{23} + 28)}{3}
\]

This is equivalent to minimizing the sum of the flow times, which (omitting constants) is

\[
\text{Minimize } t_{41} - t_{11} + t_{42} - t_{12} + t_{33} - t_{23}
\]

Constraints

One precedence between jobs on each machine must be selected:

E.g.,

\[
X_{11} + X_{12} = 1, \text{ i.e., either job 1 or job 2 must be first to be processed on machine 1}
\]

Constraints

There are the within-job precedence constraints:

For example,

\[
t_{13} \geq t_{11} + 20 \quad \text{i.e., start time of task 13 must be later (or equal) to completion time of task 11}
\]

Constraints

We must also include the within-machine precedence constraints:

For example,

\[
\begin{align*}
t_{11} \geq t_{12} + 15 - M X_{11} \\
t_{12} \geq t_{11} + 20 - M X_{12}
\end{align*}
\]

where "M" is a sufficiently big number.

Example

Four trucks are available to deliver milk to 5 groceries. Capacities & daily operating costs vary among the trucks. Demand of each grocery may be supplied by only one truck, but a truck may deliver to more than one grocery.

Formulate an ILP to minimize the daily cost of meeting the demands of the 5 groceries.

(Data on next card)

Decision Variables

Define

\[
Y_i = \begin{cases}
1 & \text{if truck } i \text{ is used} \\
0 & \text{otherwise}
\end{cases}
\]

\[
X_{ij} = \begin{cases}
1 & \text{if truck } i \text{ delivers to grocery } j \\
0 & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>Truck #</th>
<th>Capacity (gal.)</th>
<th>Daily operating cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>1100</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grocery #</th>
<th>Daily demand (gal.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
</tr>
</tbody>
</table>
Objective

Minimize the daily operating costs

\[
\text{Minimize } \sum_{i=1}^{4} C_i Y_i
\]

where \(C_i \) = daily operating cost of truck \(i \)

i.e., Minimize \(45Y_1 + 50Y_2 + 55Y_3 + 60Y_4 \)

Constraints

The deliveries made by a truck \(i \) should not exceed its capacity \(K_i \):

\[
\sum_{j=1}^{5} D_{ij} X_{ij} \leq K_i, \text{ for } i = 1, \ldots, 4
\]

where \(D_{ij} \) = demand of grocery \(j \)

\(e.g., \) for truck \#1:

\[
100X_{11} + 200X_{12} + 300X_{13} + 500X_{14} + 800X_{15} \leq 400
\]

Constraints

Another way to force \(X_{ij} = 0 \) if \(Y_i = 0 \) is to modify the earlier truck capacity constraints, adding a factor \(Y_i \) to the RHS:

\[
\sum_{j=1}^{5} D_{ij} X_{ij} \leq K_i Y_i, \text{ for } i = 1, \ldots, 4
\]

\(e.g., \)

\[
100X_{11} + 200X_{12} + 300X_{13} + 500X_{14} + 800X_{15} \leq 400Y_1
\]

Example

Governor Blue of the State of Berry is attempting to get the state legislature to "gerrymander" Berry's 5 congressional districts. The state consists of 10 cities. To form districts, cities must be grouped according to the following restrictions:

- All voters in a city must be in the same district.
- Each district must contain between 150,000 and 250,000 voters.

Decision Variables

Gov. Blue is a Democrat.

Formulate an ILP to maximize the number of Democratic congressmen, assuming voters vote a straight party ticket.

\[
X_{ij} = \begin{cases} 1 & \text{if district } i \text{ includes city } j \\ 0 & \text{otherwise} \end{cases}
\]

\[
Y_i = \begin{cases} 1 & \text{if district } i \text{ has a Democratic majority} \\ 0 & \text{otherwise} \end{cases}
\]

<table>
<thead>
<tr>
<th>Registered Voters (thousands)</th>
<th>Republicans</th>
<th>Democrats</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>

(assume no independent voters)
\textbf{Objective} \\
Maximize the number of districts with Democratic majorities:
Maximize $Y_1 + Y_2 + Y_3 + Y_4 + Y_5$

\textbf{Constraints} \\
Every city must be assigned to a district:
\[
\sum_{j=1}^{n} X_{ij} = 1 \quad \forall \; j=1, \ldots, 10
\]

For example, in the case of city 1 ($j=1$):
\[
X_{11} + X_{12} + X_{13} + X_{14} + X_{15} = 1
\]

\textbf{Constraints} \\
The population of a district must be in the range from 150 thousand to 250 thousand:
\[
150 \leq \sum_{j=1}^{10} P_j X_{ij} \leq 250 \quad \forall \; i=1, 2, 3, 4, 5
\]
where $P_j =$ population of city j (in thousands)

\textbf{Constraints} \\
We wish to impose the constraints:
\[
\sum_{j=1}^{10} \left(D_j - \frac{1}{2} P_j \right) X_{ij} \geq 0 \quad \text{if} \quad Y_i = 1
\]
\[
\sum_{j=1}^{10} \left(D_j - \frac{1}{2} P_j \right) X_{ij} \geq -\infty \quad \text{if} \quad Y_i = 0
\]

\textbf{Constraints} \\
\begin{align*}
Y_1 &= 0 \quad \text{only if there is a Democratic majority in district} \ i, \ i.e., \ only \ if \ \sum_{j=1}^{10} \frac{D_j}{P_j} X_{ij} \geq \frac{1}{2} \sum_{j=1}^{10} P_j X_{ij} \\
\Rightarrow \sum_{j=1}^{10} D_j X_{ij} &\geq \frac{1}{2} \sum_{j=1}^{10} P_j X_{ij} \Rightarrow \sum_{j=1}^{10} \left(D_j - \frac{1}{2} P_j \right) X_{ij} \geq 0
\end{align*}

Note that there is lacking in this model any consideration of the geographical location of the cities, so that the districts which are formed may not be "nicely" shaped, and in fact may not even be connected!

Actual computer models for this problem should contain constraints to ensure that the districts are connected and "compact", i.e., the ratio of length to width should be "close" to 1.

\begin{verbatim}
LP OPTIMUM FOUND AT STEPS 34
OBJECTIVE VALUE = 4.46153830

NO. ITERATIONS = 10491
BRANCHES = 632 DETERM. = 1.000E 0

LINDO model
\end{verbatim}
Example

A Sunco oil delivery truck contains 5 compartments, holding up to 2700, 2800, 1100, 1800, and 3400 gallons of fuel, respectively.

The company must deliver 3 types of fuel (super, regular, and unleaded) to a customer. Each compartment can carry only one type of fuel.

Decision Variables

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>Demand (gal.)</th>
<th>Cost per gal.</th>
<th>Max allowed shortage</th>
</tr>
</thead>
<tbody>
<tr>
<td>super</td>
<td>2900</td>
<td>$10</td>
<td>500</td>
</tr>
<tr>
<td>regular</td>
<td>4000</td>
<td>$8</td>
<td>500</td>
</tr>
<tr>
<td>unleaded</td>
<td>4900</td>
<td>$6</td>
<td>500</td>
</tr>
</tbody>
</table>

Formulate an ILP model to find the loading of the truck which minimizes shortage costs.