

Failure Rate

Consider an experiment:

N identical parts are operated until they fail; At time t, the number of surviving parts is observed:

$$N_S(t)$$
 = # surviving parts $N_F(t)$ = # failed parts where $N = N_S(t) + N_F(t)$

failed components Example

N=20 Electronic Components are tested

				V		.
i	t	NS	NF	FS	FF	fraction surviving
15 16 17 18	1.6 2.3.5 3.7.7 4.9.7 6.8 7.6.6 9.0.2 111.8 114.5	19 17 16 15 14 13 11 10 9 87 65 43 21	12334 56789 101121314 115161718	0.95 0.85 0.85 0.7 0.65 0.55 0.4 0.35 0.35 0.2 0.15 0.15	0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95	fraction failed Example

i t	: NS	NF FS	FF	∆NF/∆t	rate of
1 1, 2 2, 3 3 4 4, 7 5, 6 4, 7 5, 10 7, 11 8, 11 10, 11 11, 12 11, 13 10, 14 10, 15 11, 17 11, 18 17,	8	1 0.99 2 0.9 3 0.89 4 0.8 5 0.77 6 0.7 7 0.6 8 0.6 9 9 0.55 11 0.44 12 0.4 13 0.3 14 0.3 15 0.2 16 0.2 17 0.1 18 0.1 19 0.0	0.15 0.015 0.025 5 0.35 5 0.45 5 0.65 5 0.65 5 0.65 5 0.65 5 0.75 5 0.85 5 0.9	0.625 (0.83333 (1.25 (1.42857 (1.0 (1.25 (1.42857 (1.4285	1/ _{1.6} change 1/ _{1.2} in # of 1/ _{1.2} failures 1/ _{0.7} (failure rate of the entire surviving population)

i	t	NS	NF	FS	FF	∆NF/∆t	FR ↔	NS NS
12345678901123456789 1112345111111111111111111111111111111111	1.6 2.8 3.5 7.7 4.9 7.6 6.8 7.6 6.8 7.6 9.0 100 111 111 111 17.5	19 17 16 15 11 11 10 9 8 7 6 5 4 3 2 1	1234456789101123144156177189	0.95 0.95 0.85 0.75 0.65 0.65 0.45 0.35 0.25 0.15 0.05	0.05 0.1 0.15 0.2 0.25 0.35 0.4 0.45 0.55 0.65 0.7 0.65 0.7 0.85 0.85 0.99	0.625 0.83333 1.42857 5 1.5 1.25 3.33333 1.25 1.42857 10 2.5 0.83333 1.42857 10 0.45454 0.28571	0.03289	19 0.8333 18 failure rate per
							<i>F</i>) unit

instantaneous failure rate

$$Z(t) = \frac{\frac{d}{dt}N_{F}(t)}{N_{S}(t)}$$

"hazard" rate

We wish to express Z(t) in terms of the distribution function F:

$$\begin{array}{c|c} \hline \textit{reliability} & R(t) = \frac{N_S(t)}{N} = \frac{N - N_F(t)}{N} \\ & \Longrightarrow \frac{d}{dt} \, R(t) = -\frac{1}{N} \, \frac{d}{dt} \, N_F(t) \, \implies \frac{d}{dt} \, N_F(t) = -N \, \frac{d}{dt} \, R(t) \end{array}$$

Since
$$Z(t) = \frac{\frac{d}{dt}N_F(t)}{N_S(t)} \quad \text{and} \quad \frac{d}{dt}N_F(t) = -N \frac{d}{dt}R(t)$$
 therefore
$$Z(t) = \frac{-N \frac{d}{dt}R(t)}{N_S(t)} = \frac{N}{N_S(t)} \left(-\frac{d}{dt}R(t)\right)$$

$$Z(t) = \frac{1}{R(t)}\frac{d}{dt}F(t)$$

$$R(t) = 1 - F(t)$$

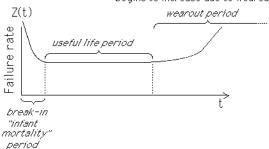
$$\Rightarrow Z(t) = \frac{f(t)}{R(t)}$$

$$\Rightarrow \frac{d}{dt}R(t) = \frac{d}{dt}F(t)$$

Another derivation of this relationship:

If T is the time of failure of a part, with distribution F(t) and density function f(t),

$$Z(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} P \begin{cases} \text{part fails in } [t, t + \Delta t], \text{ given} \\ \text{that it has survived to time } t \end{cases}$$


$$\begin{split} Z(t) &= \lim_{\Delta t \to 0} \frac{P\{T \le t + \Delta t \mid T \ge t\}}{\Delta t} \\ &= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \frac{f(t) \Delta t}{1 - F(t)} = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{R(t)} \end{split}$$

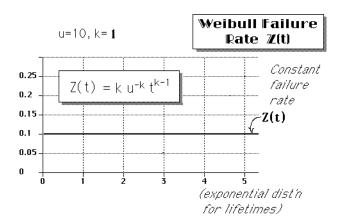
Lifetime with Weibull Dist'n

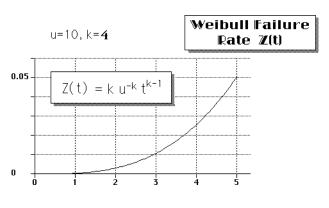
If there are many possible causes of failure of a system or a component, the lifetime may be considered to be the minimum of a large number of nonnegative random variables, which in the limit is the **Weibull** distribution.

"bathtub" curve

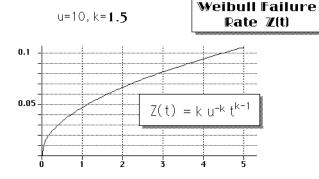
Failure rate is initially high, due to manufacturing defects, then levels off (random failures), and finally begins to increase due to wearout

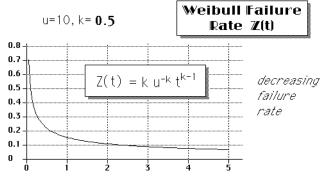
Weibull Dist'n

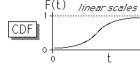

$$\begin{cases} F(t) = 1 - e^{-(t/u)^k} \\ f(t) = ku^{-k} t^{k-1} e^{-(t/u)^k} \end{cases}$$

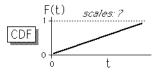

$$\Rightarrow$$
 Z(t) = $\frac{f(t)}{R(t)} = \frac{f(t)}{1 - F(t)} = k u^{-k} t^{k-1}$

$$Z(t) = k u^{-k} t^{k-1}$$


instantaneous failure rate


Z(t) is increasing or decreasing, depending upon k





Weibull Probability Paper

We would like to change the scales on the F and/or t axes, so that the plot of the CDF of the Weibull distribution is a straight line!

Given the mean and standard deviation of the lifetimes of all the parts in a sample, we could estimate the parameters of the Weibull distribution:

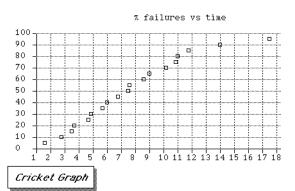
solve for k:
$$\frac{\sigma_{V}}{\mu_{V}} = \sqrt{\frac{\Gamma(1+\frac{2}{k})}{\Gamma^{2}(1+\frac{1}{k})}-1}$$

then find u: $u = \frac{\mu_{V}}{\Gamma\left(1 + \frac{1}{k}\right)}$

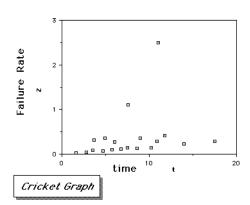
The difficulty is, however, that the parts be tested until *every* part has failed, which might require an excessive amount of time!

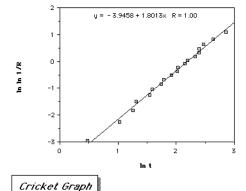
 $F(t) = 1 - e^{-(t/u)^k} \implies 1 - F(t) = e^{-(t/u)^k}$ $\implies \ln \frac{1}{1 - F(t)} = \left(\frac{t}{u}\right)^k \qquad take log of both side$

 \Rightarrow ln ln $\frac{1}{1-F(t)}$ = k ln t - k ln u take logarithms again


transformation of coordinates:

Consider again the example lifetest experiment


(Note that experiment was terminated before all components had failed!)


We will estimate the Weibull parameters by fitting a line to the data on Weibull Probability Paper

i	t	NF	FF
123456789011231415167189	1.6 8.8 3.5 7.7 4.9 6.8 7.6 6.8 7.6 9.0 10.1 11.8 14.7 17.5	12345678901123456789 11123456789	0.05 0.15 0.125 0.334 0.555 0.65 0.75 0.65 0.95

É	File	Edit	Data	Graph	turve fi	Goodies	Formats	00	-3	₹ *	File E	dit I	Data Grap	h Eurue E	is Goodies	Formats	00	3
					Lifetes	t Data 🚃			■ E					Lifete:	st Data 📰			
	1		2		3	4	5	6	F	ひ □==	6		7	8	9	10	11	
디디	t		Ns		In t	R	ln 1/R	ln ln 1/R	d	- ∐ਲ	In In 1/R		DNf	lag t	Dt	DNf/Dt	Z	C-
1		1.6		19	0.470	.95	0.052	-2.957		1	-2.9		1	0	1.600	0.625	0.033	
2		2.8		18	1.030	.90	0.105	-2.254		2	-2.2		1	1.600	1.200	0.833	0.046	
3		3.5		17	1.253	.85	0.162	-1.820		3	-1.8		1	2.800	0.700	1.429	0.084	
4		3.7		16	1.308	.80	0.223	-1.501		4	-1.5		1	3.500	0.200	5.000	0.312	
5		4.7		15	1.548	.75	0.287	-1.248		5	-1.2		1	3.700	1.000	1.000	0.067	
6		4.9		14	1.589	.70	0.357	-1.030		6	-1.0		1	4.700	0.200	5.000	0.357	
7		5.7		13	1.740	.65	0.430	-0.844		7	-0.8		1	4.900	0.800	1.250	0.096	
8		6		12	1.792	.60	0.511	-0.671		8	-0.6		1	5.700	0.300	3.333	0.278	
9		6.8		11	1.917	.55	0.598	-0.514		9	-0.5		1	6.000	0.800	1.250	0.114	
10		7.5		10	2.015	.50	0.693	-0.367		10	-0.3		1	6.800	0.700	1.429	0.143	
11		7.6		9	2.028	.45	0.798	-0.226		11	-0.2		1	7.500	0.100	10.000	1.111	
12		8.6		8	2.152	.40	0.916	-0.088		12	-0.0		1	7.600	1.000	1.000	0.125	
13		9		7	2.197	.35	1.050	0.049		13	0.0		1	8.600	0.400	2.500	0.357	
14		10.2		6	2.322	.30	1.204	0.186		14	0.1		1	9.000	1.200	0.833	0.139	
15		10.9		5	2.389	.25	1.386	0.326		15	0.3		1	10.200	0.700	1.429	0.286	
16		11		4	2.398	.20	1.609	0.476		16	0.4		1	10.900	0.100	10.000	2.500	
17		11.8		3	2.468	.15	1.897	0.640		17	0.6		11	11.000	0.800	1.250	0.417	
18		14		2	2.639	.10	2.303	0.834		18	0.8		1	11.800	2.200	0.455	0.228	
19		17.5		1	2.862	.05	2.996	1.097		19	1.0	97	1	14.000	3.500	0.286	0.286	
										20				17.500				
					ւ !						-			¬ ∣				
		Cric	ket G	raph						₹	C	rick	et Graph					₹
\Box			000000000000000000000000000000000000000							西 幻			888888888888888					

Fitting a straight line to the data

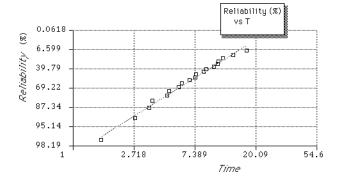
"leastsquares" regression

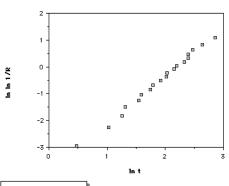
Results of the Analysis

(Note: Reliability is computed as (NS+0.5)÷N, rather than NS÷N)

 $\ensuremath{\mathtt{A}}$ least-squares linear regression was performed on the transformed variables

X = ln T, Y = ln ln 1÷R


to obtain:


Shape parameter K = 1.9834707, Scale parameter U = 9.3412548

Mean failure time = 8.2797962

Std. deviation of failure time = 4.3604985

In the table below, Z = Hazard Rate $$Y^{\prime}$$ and R^{\prime} are the fitted values for Y and R

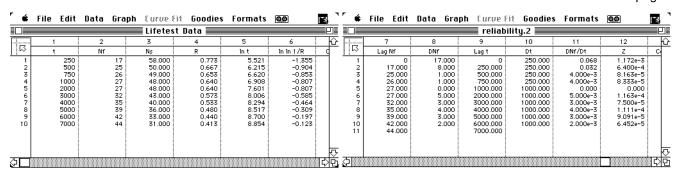
Cricket Graph

Weibull Distribution Parameters

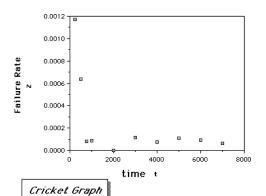
fitted line:
$$y = -3.9458 + 1.8013x$$

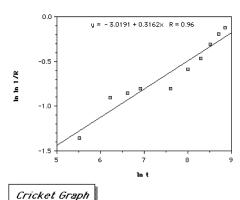
slope $= k = 1.8013$ "shape parameter"

 $y-intercept = -k ln u = -3.9458$
 $\Rightarrow ln u = \frac{3.9458}{1.8013} = 2.19053$
 $\Rightarrow u = exp\{2.19053\}$
 $u = 8.9399$ "scale parameter"

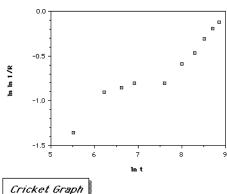

T_	f	R	X	У	Ψ'	Z	R'
1.6 2.8 3.7 4.7 4.9 5.7 6.8 7.6 8.6 9.0 10.9 11.8 14.7 17.5	12345678901123145167189	0.975 0.925 0.825 0.775 0.775 0.675 0.675 0.525 0.475 0.325 0.325 0.275 0.125 0.075	0.47 1.0296 1.2528 1.3083 1.5476 1.7405 1.79169 2.0149 2.0149 2.0149 2.0281 2.1518 2.1518 2.1922 2.3224 2.3828 2.3979 2.6391 2.8622	-3.6762 -2.5515 -2.0134 -1.6483 -1.345 -0.75501 -0.75501 -0.5917 -0.4995 -0.29512 -0.15588 -0.019357 0.11683 0.2554 0.39989 0.7321 0.95176	-3.4997 -2.3897 -1.9471 -1.8369 -1.3624 -1.2797 -0.97978 -0.62979 -0.43545 -0.40917 -0.16399 -0.073817 -0.17444 -0.30609 -0.32421 -0.30609 -	0.037446 0.064927 0.080859 0.0808500 0.11258 0.13739 0.15731 0.17511 0.17534 0.19575 0.2047 0.23152 0.24713 0.24936 0.26719 0.31611 0.39368	0.97025 0.91242 0.86703 0.85273 0.775722 0.68702 0.65995 0.52363 0.51469 0.42795 0.39501 0.30404 0.25715 0.25084 0.205084 0.2074
X =	ln	Т, У	= ln lr	ı 1÷R	<u> </u>	fitted valu	ies —

Example: Germanium Power Transistor


N = sample size = 75


time(hrs)	total # failures
250	17
500	25
750	26
1000	27
2000	27
3000	32
4000	35
5000	39
6000	42
7000	44

A lot of transistors is tested, and the number of failures are counted at certain times.



Cricket Graph

Cricket Graph

Weibull Distribution Parameters

fitted line:
$$y = -3.0191 + 0.3162x$$

slope $= k = 0.3162$ "shape parameter"
 y -intercept $= -k \ln u = -3.0191$
 $\Rightarrow \ln u = \frac{3.0191}{0.3162} = 9.5481$
 $\Rightarrow u = \exp\{9.5481\}$
 $u = 14017.6$ "scale parameter"

i t	NS NF FS	FF	∆NF/∆	FR
1 250 2 500 3 750 4 1000 5 2000 6 3000 7 4000 8 5000 9 6000 10 7000	58 17 0.77333 50 25 0.66667 49 26 0.65533 48 27 0.64 48 27 0.64 43 32 0.57333 40 35 0.53333 36 39 0.48 33 42 0.44 31 44 0.41333	0.33333 0.34667 0.36 0.36 0.42667 0.46667 0.52	0.032 0.004 0.004 0 0.005 0.003 0.004 0.003	0.0011724 0.00064 0.00081633 0.000083333 0.00011628 0.000075 0.000075 0.000090909

FS = fraction survived (~ reliability) NS = # survivors NF = # failures FF = fraction failed

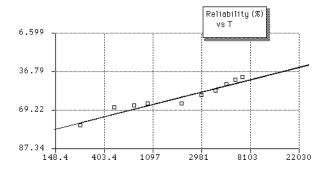
 $\Delta NF/\Delta t$ = failure rate of population FR=($\Delta NF/\Delta t$)/NS = failure rate of individuals

	70 -	
failed	60-	% failed vs. time
	50-	d d
å a	40 -	
0.	30-	
	20-	
	0	1000 2000 3000 4000 5000 6000 7000 8000
		time

Results of the Analysis

(Note: Reliability is computed as (NS+0.5)÷N, rather than NS÷N)

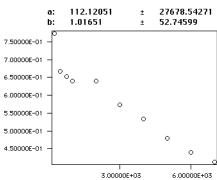
A least-squares linear regression was performed on the transformed variables $X \ = \ ln \ T, \quad Y \ = \ ln \ 1 + R$


to obtain:

Shape parameter K = 0.32022, Scale parameter U = 14707

Mean failure time = 103180 Std. deviation of failure time = 487020

In the table below,
 X = ln T,
 Y = ln ln 1÷R
 Z = Hazard Rate (×10E-3)/unit time
 Y' and R' are the fitted values for Y and R


T	f	R	X	Y	Ψ'	Z	R'
500 750 1000 2000 3000 4000	25 26 27 27 32 35 39 42	0.78 0.67333 0.66 0.64667 0.64667 0.58 0.54 0.48667 0.44667	8.294 8.5172 8.6995	-1.3925 -0.92757 -0.87824 -0.83029 -0.83029 -0.60747 -0.48421 -0.32826 -0.21574 -0.14214	-1.3048 -1.0828 -0.95298 -0.86086 -0.6389 -0.50906 -0.41694 -0.34548 -0.2871 -0.23774	0.34742 0.21688 0.16463 0.13539 0.084519 0.064158 0.052762 0.045336 0.040051 0.036067	0.76244 0.71274 0.68005 0.65521 0.58986 0.54823 0.51734 0.49269 0.47216 0.45457

X Coord.	Y Coord.	<u>Plot</u>	<u>Fit</u>
2.50000E+02	7.73000E-01	23)	[2]
5.00000E+02	6.67000E-01	20	[20]
7.50000E+02 1.00000E+03	6.53000E-01 6.40000E-01	525	123 [23]
2.00000E+03	6.40000E-01	23	(20
3.00000E+03	5.73000E-01	23)	[2]
4.00000E+03	5.33000E-01	23)	[2]
5.00000E+03	4.80000E-01	QK)	(2) (5)
6.00000E+03	4.40000E-01 4.13000E-01	252 531	12U 150
1.555502.100	55502 01	222	27.25

Estimated Errors in Coefficients:

X Coord.	Y Coord.	<u>Plot</u>	<u>Fit</u>
2.50000E+02	7.73000E-01	\boxtimes	\Box
5.00000E+02	6.67000E-01	\boxtimes	\boxtimes
7.50000E+02	6.53000E-01	\boxtimes	\boxtimes
1.00000E+03	6.40000E-01	\boxtimes	\boxtimes
2.00000E+03	6.40000E-01	\boxtimes	\boxtimes
3.00000E+03	5.73000E-01	\boxtimes	\boxtimes
4.00000E+03	5.33000E-01	\boxtimes	\boxtimes
5.00000E+03	4.80000E-01	\boxtimes	\boxtimes
6.00000E+03	4.40000E-01	\boxtimes	\boxtimes
7.00000E+03	4.13000E-01	\boxtimes	\boxtimes

Estimated Errors in Coefficients:

123.21391 ± 26268.33996 1.02913 ± 47.52466