

Error:

$$\epsilon_{i} = Y_{i} - Y_{i} = Y_{i} - aX_{i} - b$$
Choose a&b to

$$i \epsilon_{i}^{2} = \sum_{i} (Y_{i} - aX_{i} - b)^{2}$$

$$\xrightarrow{aptimality}_{condins}$$

$$\begin{cases} \frac{\partial}{\partial a} \sum_{i} \epsilon_{i}^{2} = -2\sum_{i} X_{i} (Y_{i} - aX_{i} - b) = 0 \\ \frac{\partial}{\partial b} \sum_{i} \epsilon_{i}^{2} = -2\sum_{i} (Y_{i} - aX_{i} - b) = 0 \\ \xrightarrow{ab} \sum_{i} \epsilon_{i}^{2} = -2\sum_{i} (Y_{i} - aX_{i} - b) = 0 \\ \xrightarrow{b} \sum_{i} a b \sum_{i} \epsilon_{i}^{2} = -2\sum_{i} (Y_{i} - aX_{i} - b) = 0 \end{cases}$$

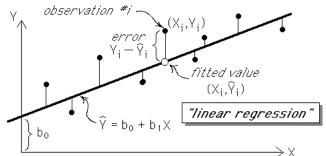
Suppose that an experiment is performed N times, each time varying certain "independent" variables and observing the value of a "dependent" variable:

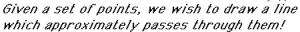
observation	Dependent	INDEPE	ENDENT	VARIA	BLES	
+	variable Y	U	V	W	Х	
1	Y ₁	U1	V_1	W_1	X_1	
2	Y ₂	U ₂	V_2	W_2	X_2	•••
3	Y ₃	U₃	V_3	W_3	X3	•••
4	Y ₄	U ₄	V_4	W_4	X ₄	•••
:	:	:	:	:	÷	
Ň	Y _N	Ú _N	V _N	$W_{\rm N}$	$\times_{\rm N}$	•••

Minimize
$$\sum_{i=1}^{N} (Y_i - b_0 - b_1 U_i - b_2 V_i - b_3 W_i - b_4 X_i - ...)^2$$

This is an unconstrained nonlinear optimization problem with a *quadratic* objective function $\Phi(b_0, b_1, b_2, ...)$

Therefore, its gradient, $\nabla \Phi$, is a *linear* function and the necessary condition for an optimum $\nabla \Phi(b_0, b_1, b_2, \ldots) = 0$ is a *linear* system of equations.





$$\implies \begin{cases} \sum_{i} Y_{i} = nb + a\sum_{i} X_{i} \implies b = \frac{\sum_{i} Y_{i} - a\sum_{i} X_{i}}{n} \\ \sum_{i} X_{i} Y_{i} = b\sum_{i} X_{i} + a\sum_{i} X_{i}^{2} \end{cases}$$
$$\implies \boxed{a = \frac{\sum_{i} X_{i} Y_{i} - n\overline{X} \overline{Y}}{\sum_{i} X_{i}^{2} - n \overline{X}^{2}}, \quad b = \overline{Y} - a \overline{X} \end{cases}$$
$$\xrightarrow{note:}{\overline{X} = \frac{1}{n} \sum_{i} X_{i}, \quad \overline{Y} = \frac{1}{n} \sum_{i} Y_{i}}$$

Suppose that we suspect the relationship

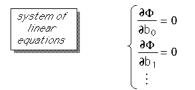
$$Y = b_0 + b_1U + b_2V + b_3W + b_4X + \dots$$

where b_0, b_1, b_2, \dots are unknown to us.

The "least square error" fit to the data is the set of coefficients b_0 , b_1 , b_2 , ... which

Minimizes
$$\sum_{i=1}^{N} (Y_i - b_0 - b_1 U_i - b_2 V_i - b_3 W_i - b_4 X_i - ...)^2$$

Note that b_0 , b_1 , b_2 , ..., are the variables of this problem, while U_1 , V_1 , W_1 , X_2 , etc., are constants!



Other possible objectives, for example

$$\operatorname{Min} \sum_{i=1}^{N} |Y_i - b_0 - b_1 U_i - b_2 V_i - \dots | \xrightarrow{requires LP}_{optimum}$$

are more difficult to achieve, and are therefore seldom used.

Curve Fitting

Fitting Nonlinear Curves

To fit a polynomial curve

т.

To solve:

$$Min \sum_{i=1}^{N} |Y_i - b_0 - b_1 U_i - b_2 V_i - \dots|$$
Define new variables z_i , $i=1,2, \dots n$

$$Linear Program #1$$

$$Minimize \sum_{i=1}^{n} \mathbf{z}_i$$
subject to
$$\mathbf{z}_i \ge \mathbf{Y}_i - \mathbf{b}_0 - \mathbf{b}_1 U_i - \mathbf{b}_2 V_i - \dots$$

$$\mathbf{z}_i \ge -\mathbf{Y}_i + \mathbf{b}_0 + \mathbf{b}_1 U_i + \mathbf{b}_2 V_i + \dots$$

$$i=1,2, \dots n$$

 $Y = b_0 + b_1 X + b_2 X^2 + b_3 X^3 + \dots$

Then the problem becomes that of fitting a linear

make a transformation of variables $U=X^2$

W=X, etc.

function: $Y = b_0 + b_1 X + b_2 U + b_3 V + \dots$

V=X³

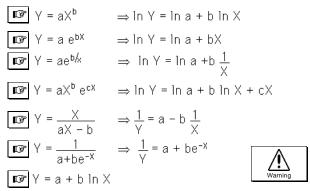
To solve:

$$Min \sum_{i=1}^{N} |Y_i - b_0 - b_1U_i - b_2V_i - \dots |$$

Define new variables $z_i^+ \& z_i^-$, i=1,2, ... n Linear Program #2

Minimize $\sum_{i=1}^{n} (z_i^+ + z_i^-)$ subject to)	
$z_{i}^{+} - z_{i}^{-} = \mathbf{Y}_{i} - \mathbf{b}_{0} - \mathbf{b}_{0}$	$\mathbf{b}_{1}\mathbf{U}_{i} - \mathbf{b}_{2}\mathbf{V}_{i} - \dots \forall$ $z_{i} \ge 0 \qquad \forall$	i i

A wide variety of other curves are linearizable:



 $Y = \frac{X}{aX - b}$

2 -1 --1--3--4-

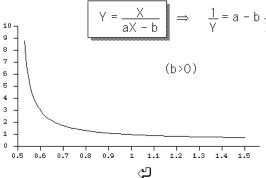
-6-

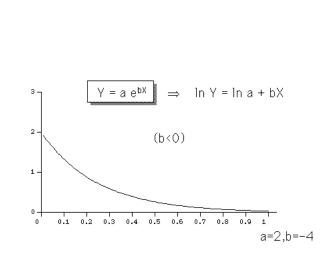
-0.5

 $\Rightarrow \frac{1}{Y} = a - b \frac{1}{X}$

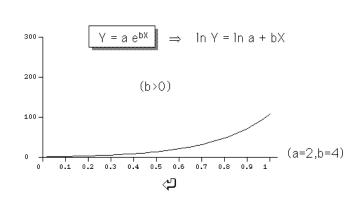
(b<0)

1.0 11.21.31.41.5



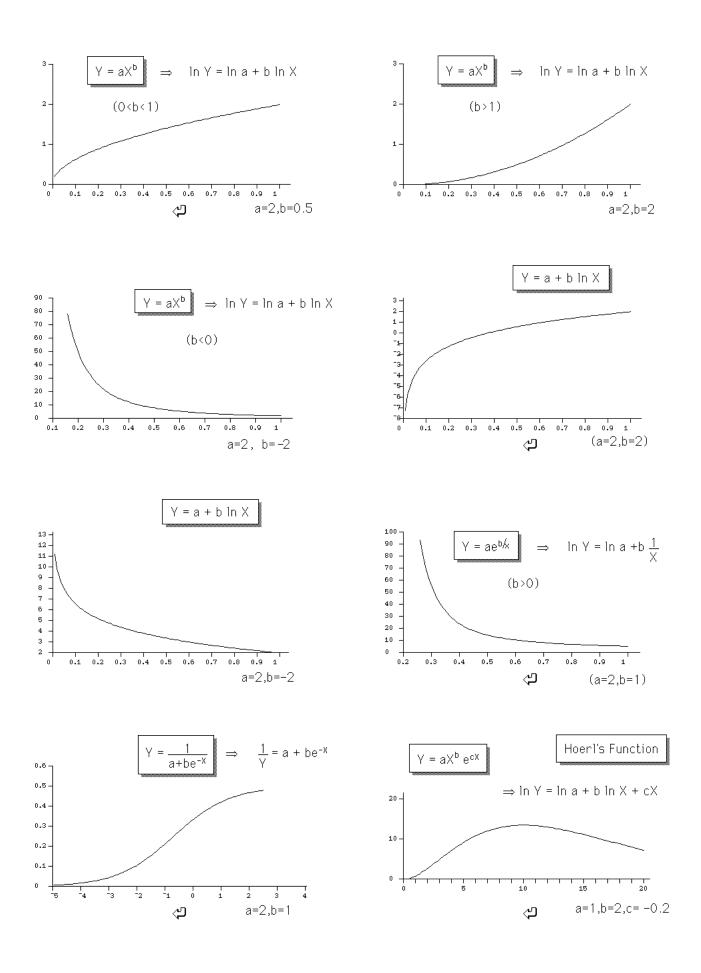


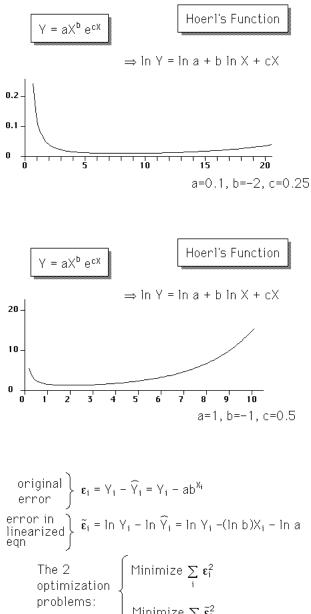
0.5

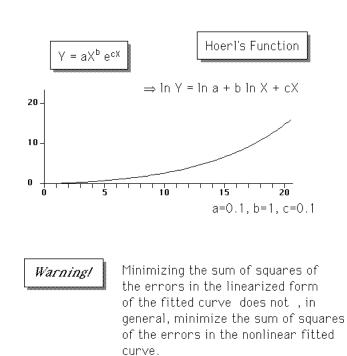


7/15/98

page 3







For example, suppose that we wish to fit a curve $Y = ab^X$ to our data.

The linearized form is ln Y = (ln b)X + ln a

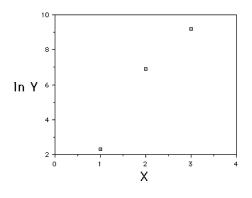
ŝ

Example:

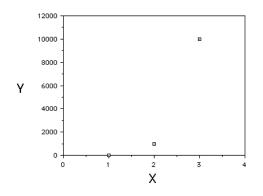
i	1	2	3
Xi	1	2	3
Yi	10	1000	10000

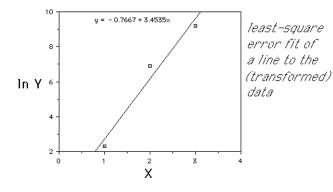
By inspection, we might guess that a fairly good fit is given by

1	Ŷ =	10	×	10 [×]	
L					

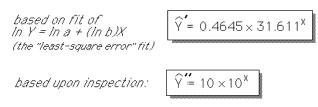


Minimize $\sum \tilde{\epsilon}_i^2$ will give different results!





We have t	wo "fits	" of curve	s of the	e form
Y= ab ^X	to the da	ata:		



X _i	Y _i	Ŷi"	ϵ_{i}
1	10	100	90
2	1000	1000	0
3	10000	10000	0

 $\sum_{i} \epsilon_{i}^{2} = 8100$

 $\hat{Y}'' = 10 \times 10^{X}$

Only about 0.04% of the sum of the squared errors for the other curves!

Х	Y	X	Y
667	54	3619	106
727	42	3865	98
823	34	4266	261
1086	- 75	4299	197
1529	103	4382	106
1941	87	5560	216
2266	53	5955	251
2515	113	6358	347
3187	137	7165	339
3218	114	7910	282

It is expected that $Y = aX^b$

Fitted line: $\ln Y = (\ln b)X + (\ln a)$ $\ln Y = -0.7667 + 3.4535 X$ $\ln a = -0.7667 \Rightarrow a = e^{-0.7667} = 0.46454$ $\ln b = 3.4535 \Rightarrow b = e^{3.4535} = 31.611$

 $Y = 0.46454 \times 31.611^{x}$

	red on fit d ' = In a + (
X _i	Yi	\widehat{Y}_{i}	ϵ_i		
1	10	14.685	4.685		
2	1000	464.19	535.81		
3	10000	14673.64	4673.64		
		$\sum_{i} \tilde{\epsilon}_{i}^{2} =$	22,130,012.5		
$\hat{Y}' = 0.4645 \times 31.611^{x}$					

The curve which minimizes the squared error in the linear fit to the transformed data does not minimize the squared error in the nonlinear fit to the raw data!