LP models for Curve-Fitting

Dennis Bricker University of Iowa **Problem Formulation.** In constructing a hydrological model, it is required to obtain the expected runoff, denoted by R_i during the ith period, as a linear function of the observed precipitation. From hydrological considerations the expected runoff depends on the precipitation during period i (p_i) and the previous two periods. So the model for expected runoff is

$$R_i = b_o p_i + b_1 p_{i-1} + b_2 p_{i-2}$$

where p_i is the precipitation during the i^{th} period; b_0 , b_1 , and b_2 are the coefficients that are to be estimated. These coefficients have to satisfy the following constraints from hydrological considerations:

page 2

 $b_0 \ge b_1 \ge b_2 \ge 0.$

The following data is available:

Period	1	2	3	4	5	6	7	8	9	10	11	12
Precipitation												
(inch-hours)	3.8	4.4	5.7	5.2	7.7	6.0	5.4	5.7	5.5	2.5	0.8	0.4
Runoff												
(acre-feet)	0.05	0.35	1.0	2.1	3.7	4.2	4.3	4.4	4.3	4.2	3.6	2.7

page 1

Thus we require that R_3 (i.e., 1.0) be *approximately* $5.7b_0 + 4.4b_1 + 3.8b_2$.

a. Obtain the best estimates for b0, b1, and b2 if the objective is to minimize the *sum of absolute deviations*:

$$\sum_{i=3}^{12} \left| R_i - \left(b_0 p_i + b_1 p_{i-1} + b_2 p_{i-2} \right) \right|$$

b. Obtain the best estimates for b0, b1, and b2 if the objective is to minimize the

maximum absolute deviation:

$$M_{i} = \left| R_{i} - \left(b_{0} p_{i} + b_{1} p_{i-1} + b_{2} p_{i-2} \right) \right|.$$

c. (Optional) Use the standard linear regression model which minimizes the sum of the squares of the deviations, but without any restrictions on the coefficients b0, b1, and b2:

$$\sum_{i=3}^{12} \left[R_i - \left(b_0 p_i + b_1 p_{i-1} + b_2 p_{i-2} \right) \right]^2$$

page 6

Do the regression model coefficients satisfy $b_0 \ge b_1 \ge b_2 \ge 0$?

page 5