Electric Generating

Capacity Expansion

A shortest-path model

© Dennis L. Bricker
Dept of Mechanical \& Industrial Engineering
The University of Illinois
\& Dept of Business
Lithuania Christian College

Capacity Planning for Electric Utility

An electric utility company must schedule the addition of power generation capactiy over the next six years, given

- cumulative number of plants required each year
- fixed cost during year in which plants are constructed
- marginal cost per plant
- discount factor

The fixed cost of adding capacity in a year, independent of the number of generators added, is $1.5 \mathrm{M} \$$.
The marginal cost per generator varies by year, and is

Year	1	2	3	4	5	6
$\$ M /$ unit	5.4	5.6.	5.8	5.7	5.5	5.2

Based upon forecasts of demand, the company has set the following goals to be achieved by the end of any year, i.e., the cumulative number of generators installed:

Year	1	2	3	4	5	6
\# units	1	2	4	6	7	8

A total of eight generators will have been installed during the six-year period, then, with a restriction that no more than three may be installed during each one-year period.

In a project of this magnitude and duration, consideration of the time value of money is important. The company policy is to use a discount rate of $\mathbf{0 . 8 6 9 5 6}$, that is, the present value of a cost of $\$ 1$ incurred one year into the future is $\$ 0.86956$.

The optimal sequence of units added corresponds to a path from source node $(0,0)$, time 0,0 units added.
to the
destination node $(6,8)$, time 6,8 units added.

The cost of a link between two nodes is the cost of adding the corresponding capacity--
for example, the cost of the link

$$
(2,3) \rightarrow(3,6)
$$

is the cost of adding 3 generators in period 2 , namely

$$
1.5+3 \times 5.6=18.3
$$

Shown on the left is the shortest path from the initial node to the destination, node $(6,8)$.

The length of this shortest path (discounted for present value) is
37.7664

