

Upper Bounding Technique

Consider the LP:

Max
$$2x_1 + 4x_2 + 5x_3 + 3x_4$$

subject to

$$\begin{array}{l} x_1 + 3 x_2 + 6 x_3 + 2 x_4 \leq 24 \\ 5 x_1 + 4 x_2 & + 4 x_4 \leq 20 \\ \end{array}$$
Simple upper bounds
$$\begin{cases} 0 \leq x_1 \leq 3 \\ 0 \leq x_2 \leq 4 \\ 0 \leq x_3 \leq 3 \\ 0 \leq x_4 \leq 3 \end{cases}$$

the tableau is

If the upper bounding technique (UBT) is NOT used,

Γ	2	4	5	3	0	0	0	0	0	0	0
	1	3	6	2	1	0	0	0	0	0	24
	5	4	0	4	0	1	0	0	0	0	20
	1	0	0	0	0	0	1	0	0	0	3
	0	1	0	0	0	0	0	1	0	0	4
	0	0	1	0	0	0	0	0	1	0	3
	0	0	0	1	0	0	0	0	0	1	3
- 333											

and a 6x6 basis inverse matrix must be maintained.

When using UBT, only a 2x2 "working basis" is used.

When using the Upper Bounding Technique,

- nonbasic variable may be at *either*
- lower bound
 - upper bound
- a variable enters the basis by

- increasing if it is at its lower bound *or*

- decreasing if it is at its upper bound

Upper Bounding Technique 8/27/97
When using the Upper Bounding Technique,

• choice of the pivot column :

reduced cost {<0 if at lower bound >0 if at upper bound

for minimization problem

relative profit
$$\begin{cases} >0 \text{ if at lower bound for} \\ <0 \text{ if at upper bound } \\ problem \end{cases}$$

When using the Upper Bounding Technique,

Choice of the pivot row :

The variable entering the basis from one bound (either lower or upper) is "blocked" whenever

it reaches its other bound

- or a variable currently in the basis reaches its lower bound
- or a variable currently in the basis reaches its upper bound

Consider the LP

 $L_{
m i}$ might be, but need not be, zero !

Define a basis ("working basis") B such that

$$(A^B)^{-1}$$
 exists, i.e., $det(A^B) \neq 0$

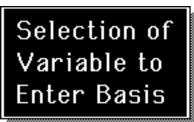
and partition the non-basic variables into subsets

 $L = \{i \mid x_i = L_i \}$ and $U = \{i \mid x_i = U_i \}$

$$\begin{aligned} \mathbf{A}^{\mathrm{B}}\mathbf{x}_{\mathrm{B}} + \mathbf{A}^{\mathrm{L}}\mathbf{x}_{\mathrm{L}} + \mathbf{A}^{\mathrm{U}}\mathbf{x}_{\mathrm{U}} &= \mathbf{b} \\ \mathbf{A}^{\mathrm{B}}\mathbf{x}_{\mathrm{B}} &= \mathbf{b} - \mathbf{A}^{\mathrm{L}}\mathbf{x}_{\mathrm{L}} - \mathbf{A}^{\mathrm{U}}\mathbf{x}_{\mathrm{U}} \\ \mathbf{x}_{\mathrm{B}} &= \left(\mathbf{A}^{\mathrm{B}}\right)^{-1}\mathbf{b} - \left(\mathbf{A}^{\mathrm{B}}\right)^{-1}\mathbf{A}^{\mathrm{L}}\mathbf{x}_{\mathrm{L}} - \left(\mathbf{A}^{\mathrm{B}}\right)^{-1}\mathbf{A}^{\mathrm{U}}\mathbf{x}_{\mathrm{U}} \end{aligned}$$

The current basic solution is

$$\begin{array}{l} \begin{array}{l} \textit{non-} \\ \textit{basic} \\ \textit{variables} \end{array} \left\{ \begin{array}{l} \mathbf{x}_{\mathrm{U}} = \boldsymbol{U}_{\mathrm{U}} \\ \mathbf{x}_{\mathrm{L}} = \boldsymbol{L}_{\mathrm{L}} \\ \begin{array}{l} \textit{basic} \\ \textit{variables} \end{array} \right\} \mathbf{x}_{\mathrm{B}} = \left(\mathbf{A}^{\mathrm{B}}\right)^{-1} \mathbf{b} - \left(\mathbf{A}^{\mathrm{B}}\right)^{-1} \mathbf{A}^{\mathrm{L}} \boldsymbol{L}_{\mathrm{L}} - \left(\mathbf{A}^{\mathrm{B}}\right)^{-1} \mathbf{A}^{\mathrm{U}} \boldsymbol{U}_{\mathrm{U}} \end{array}$$



A nonbasic variable may be in either set L (at lower bound) or set U (at upper bound)

The "relative profit" ("reduced cost" if minimizing) specifies the change in the objective function per unit *increase* in the nonbasic variable.

Non basic set	Change in x _j if entering basis	sign of $\overline{\mathbf{c}}_j = \mathbf{c}_j - \pi \mathbf{A}^j$	change in objective	
U	decrease	positive	decrease	
	uecrease	negative	increase	
1	increase	positive	increase	
		negative	decrease	

Selection of Variable to Enter Basis Suppose that a nonbasic variable x_j were to be selected to enter the basis...

Upper Bounding Technique

Nonbasic Variable	Substitution Rate in Row i _{Clij}	Effect on Basic Variable X_k in Row i	Blocking Value
in L	positive	decrease	$(X_k - L_k)/\alpha_{ij}$
INCREASING	negative	increase	$\left(U_{k} - X_{k} \right) / \left \alpha_{ij} \right $
in U DECREASING	positive	increase	$(U_k - X_k) / \alpha_{ij} $
	negative	decrease	$(X_k - L_k)/\alpha_{ij}$

Selection of Pivot Row

If "blocking value" is greater than $U_j - L_j$, then the nonbasic variable is moved from L to U (or vice-versa), but the basis B is unchanged!

When the nonbasic variable X_j is increasing from its LOWER BOUND:

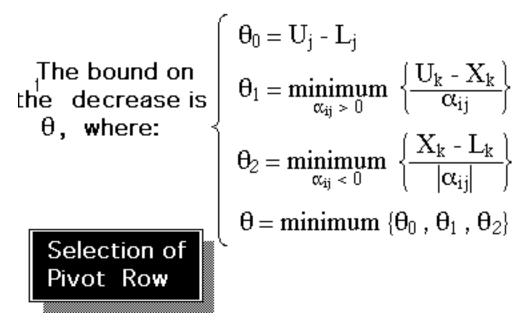
$$\label{eq:theta_series} \begin{split} \text{The bound on} \\ \text{the increase is} \\ \theta_{\text{, where:}} \end{split} \begin{cases} \theta_0 = U_j - L_j \\ \theta_1 = \underset{\alpha_{ij} > 0}{\min \min} ~ \left\{ \frac{X_k - L_k}{\alpha_{ij}} \right\} \\ \theta_2 = \underset{\alpha_{ij} < 0}{\min \min} ~ \left\{ \frac{U_k - X_k}{|\alpha_{ij}|} \right\} \\ \theta = \min \max ~ \{\theta_0 \ , \ \theta_1 \ , \ \theta_2\} \end{split}$$

page 6

$, \theta_2 \}$	θ	blocking value	change in partition:		
$\{\theta_0, \theta_1, $	θ ₀	U _j - L _j	j transfers from L to U		
minimum {($\theta_1 = \frac{X_k - L_k}{\alpha_{ij} / O}$		j enters B k leaves B, enters L		
$\theta = \min_{i=1}^{n} \theta_{i}$	$\theta_2 \left \frac{\mathbf{U}_k - \mathbf{X}_k}{\left \boldsymbol{\alpha}_{ij} \right _{\langle \langle \mathcal{O} \rangle}} \right $		j enters B k leaves B, enters U		

Selection of Pivot Row When the nonbasic variable $\,X_{j}\,$ is increasing from its LOWER BOUND

When the nonbasic variable is decreasing from its UPPER BOUND:



page 7

$, \theta_2 \}$	θ	blocking value	change in partition:			
$\{\theta_0, \theta_1$	θ_0	U _j - L _j	j transfers from L to U B unchanged			
minimum {($\theta_1 \left[\frac{U_k - X_k}{\alpha_{ij}} \right]$		j enters B k leavesB,entersU			
$\theta = \min_{i=1}^{n} \theta_{i}$	$\theta_2 \left[\begin{array}{c} \frac{X_k - L_k}{ \alpha_{ij} } \\ \hline \end{array} \right]$		j enters B k leavesB,enters L			

Selection of Pivot Ro**w** When the nonbasic variable is decreasing from its UPPER BOUND

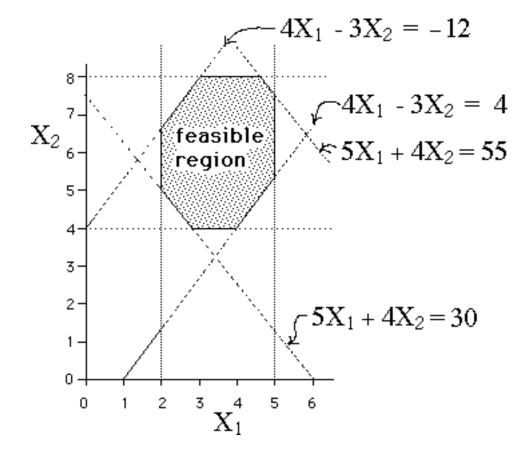
Examples, with output from APL workspace UBT

$$\begin{array}{|c|c|c|c|c|c|} \hline \mathbb{IS} & \text{Maximize} & 18X_1 + 25X_2 \\ & & & & \\ &$$

Maximize $18X_1 + 25X_2$ subject to $\begin{cases} 30 \le 5X_1 + 4X_2 \le 55 \\ -12 \le 4X_1 - 3X_2 \le 4 \\ 2 \le X_1 \le 5, 4 \le X_2 \le 8 \end{cases}$

The ordinary simplex or revised simplex method would require a tableau with 8 constraints, and 8 slack &/or surplus variables (in addition to X_1 and X_2). That is, an 8x8 basis matrix is required.

ත



Add slack variables to the ≤ constraints to create equalities. Then put upper bounds on these slack variables:

Using UBT, only a 2x2 basis matrix is required, i.e. a reduction of nearly 94% in the number of elements in the inverse matrix!

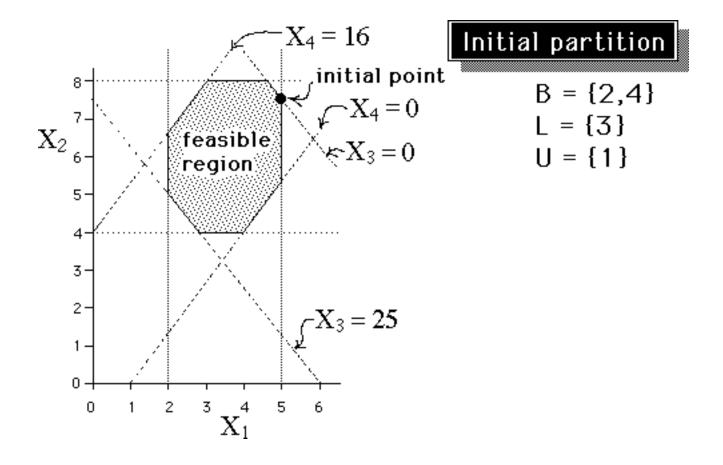
1	2	3	4	b
5	4	1	0	55 4
4	-3	0	1	4

Constraints

i	1	2	3	4
c[i]	18	25	0	0
L[i]	2	4	0	0
UCil	5	8	25	16

Objective & Bounds

Current partition B= 2 4 / L= 3 /						Iteration 1
Basis inverse matr	rix =	0.25 0.75	0 1			
X Basic solution= 5		Х ₃		with 7	= 273	7 5
<u> </u>	П	11	; = int	wich Z	- 27	
upper bound	intermediate value	lower bound	ermediate value			B = {2,4} L = { 3 } U = { 1 }



$$\mathbf{\pi} = \mathbf{C}_{\mathbf{B}} \left(\mathbf{A}^{\mathbf{B}} \right)^{-1} = \begin{bmatrix} \mathbf{25}, \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{1/4} & \mathbf{0} \\ \mathbf{3/4} & \mathbf{1} \end{bmatrix}$$

multipliers= 6.25 0

Simplex

$$\underbrace{\begin{array}{cccc} C & -\pi & A &= [18,25,0,0] - [25/4,0] \\ 4 & -3 & 0 & 1 \end{array}}_{4 & -3 & 0 & 1 & .}$$

Reduced costs= -13.25 0 -6.25 0

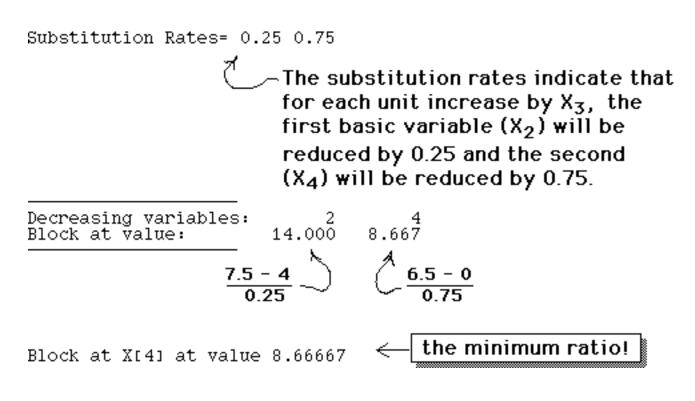
Since we wish to minimize, we would choose to increase either X_1 or X_3 ... however, X_1 is already at its upper bound $(U=\{1\})$ and so we choose to enter X_3 into the basis.

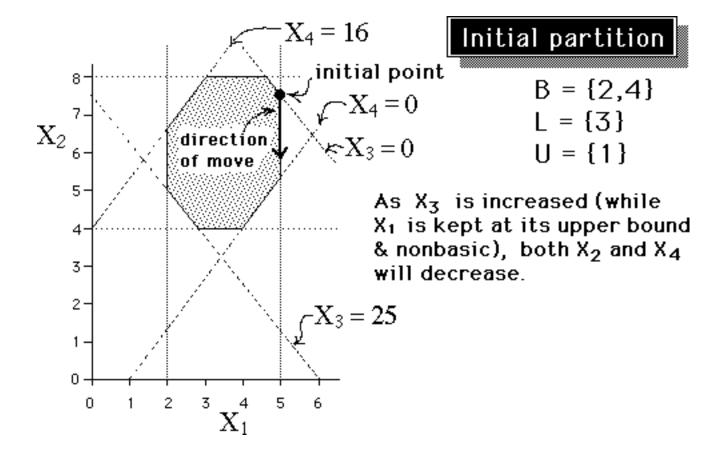
Entering variable is X[3] from set L Substitution Rates= 0.25 0.75

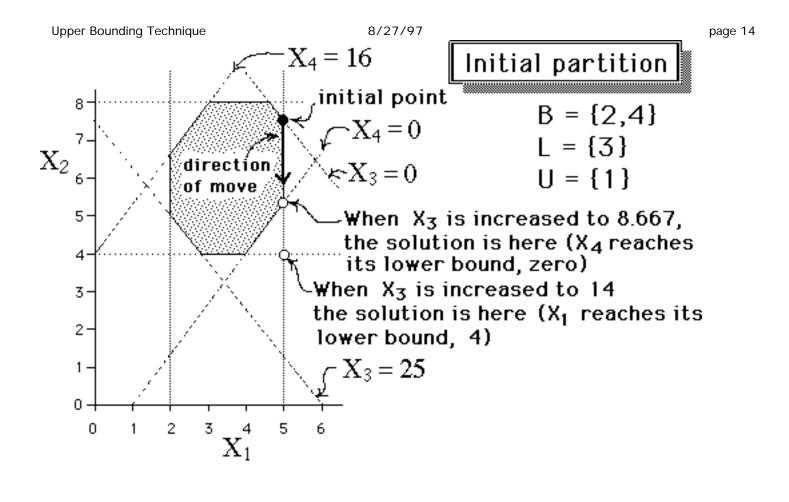
> — The substitution rates indicate that for each unit increase by X_3 , the first basic variable (X_2) will be reduced by 0.25 and the second (X₄) will be reduced by 0.75.

 X_2 is currently 7.5, and its lower bound is 4, so that it must leave the basis when it is decreased by 3.5, i.e., when X_3 is increased by $\frac{7.5-4}{0.25} = 14$

Likewise, X_4 can decrease by only 6.5 before it must leave the basis, i.e., X can increase by only $\frac{6.5 - 0}{0.75} = \frac{26}{3}$ Entering variable is X[3] from set L







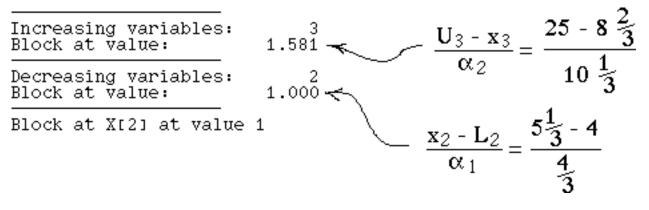
Current partition:

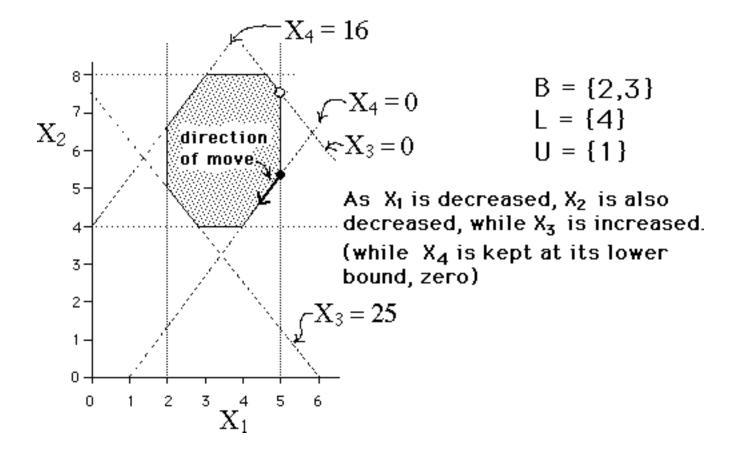
$$B = 2 \ 3 \ / \ L = 4 \ / \ U = 1$$

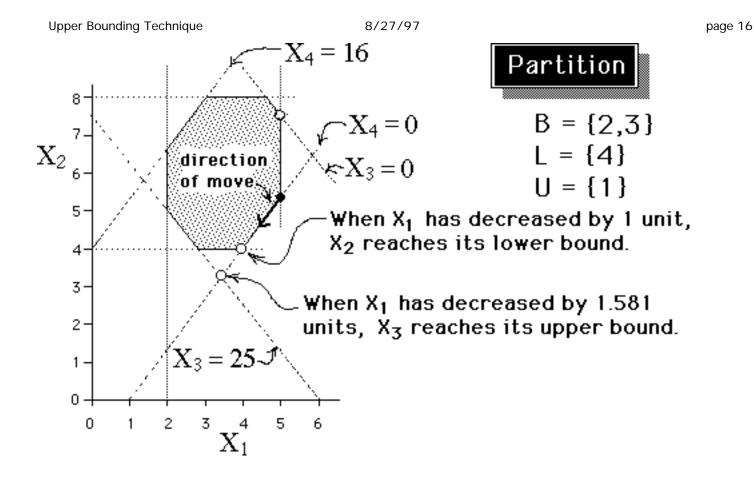
Basis inverse matrix = $\begin{bmatrix} 0 & -0.33333 \\ 1 & 1.33333 \end{bmatrix}$
Basic solution= 5 5.33333 8.66667 0 with Z = 223.333
Simplex multipliers= 0 -8.33333
Reduced costs= 51.3333 0 0 8.33333

¹Since we are minimizing, we would choose to decrease either X₁ or X₄. However, X₄ is already at its lower bound, and so we choose to enter X₁ into the basis (from set U). Entering variable is X[1] from set U Substitution Rates= -1.33333 10.3333

The negative substitution rate indicates that the first basic variable (X_2) will also decrease as X_1 is decreased, while the positive substitution rate indicates that the second basic variable (X_3) will increase as X_1 is decreased.

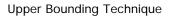


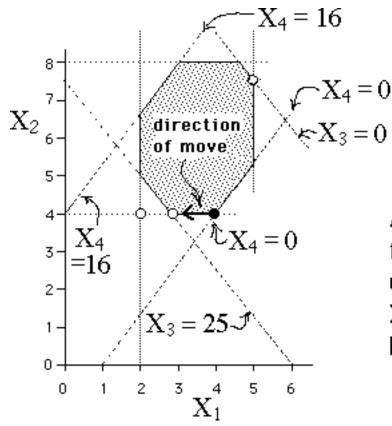


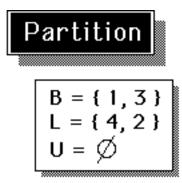


Current partition: B= 1 3 / L= 4 2 / II= 0 1 Basis inverse matrix = 0.25 -1.25 Basic solution= 4 4 19 0 with Z = 172Simplex multipliers= 0 4.5 Reduced costs= 0 38.5 0 -4.5 Entering variable is X[4] from set L Substitution Rates= 0.25 -1.25 Increasing variables: 3 Block at value: 4.800 Decreasing variables: Block at value: 8.000 Block at X[3] at value 4.8

B = { 1, 3 } L = { 4, 2 } U = Ø



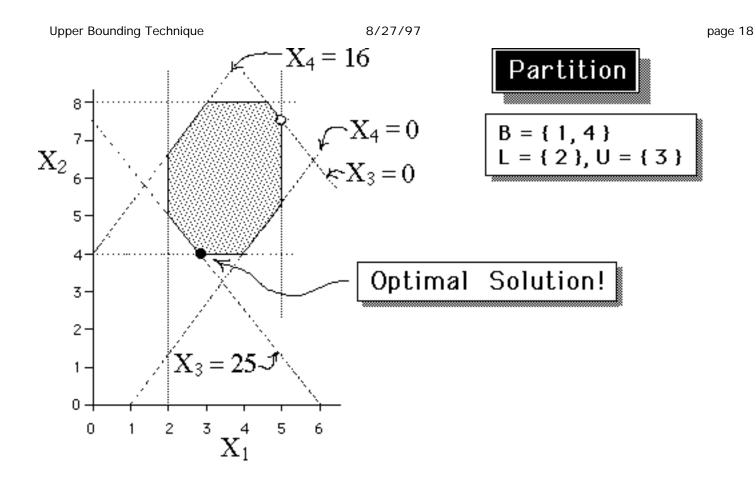




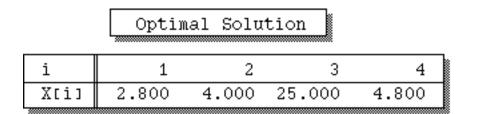
As X₄ is increased, first X₃ reaches its upper bound, and then X₁ reaches its lower bound.

Current partition: $B = \{1, 4\}$ B= 1 4 / L= 2 / U= 3 $L = \{2\}, U = \{3\}$ Basis inverse matrix = 0.2 0 -0.8 1 Basic solution= 2.8 4 25 4.8 with Z = 150.4 Simplex multipliers= 3.6 0 Reduced costs= 0 10.6 -3.6 0 The negative reduced The positive reduced cost cost indicates that indicates that lowering X₂ would improve the solution... increasing X₃ would improve the solution... but X₂ is already at its but X₃ is already at its lower bound. upper bound.

8/27/97



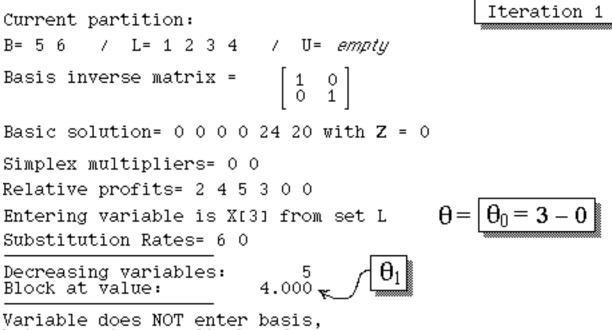
Since no change in the nonbasic variables will yield an improved solution, the current solution is optimal!



Objective Z= 150.4

8/27/97

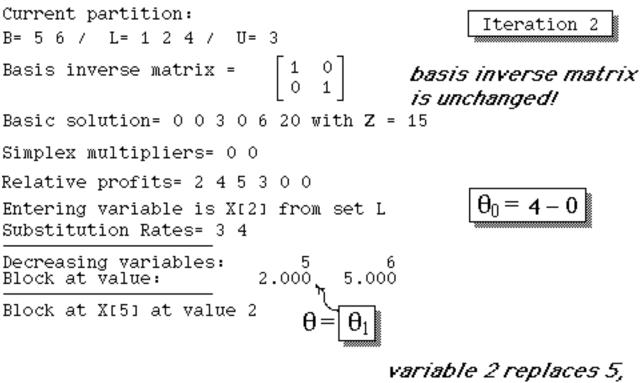
പ



but moves to opposite bound

Upper Bounding Technique

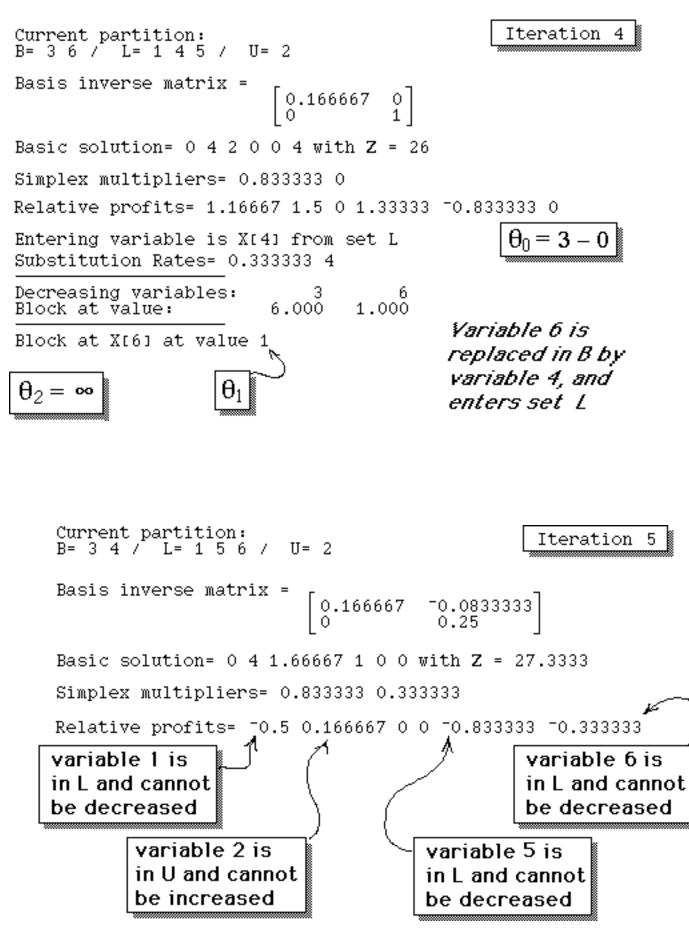
page 20



and 5 enters L!

Current partition: Iteration 3 B= 2 6 / L= 1 4 5 / U= 3 Basis inverse matrix = 0.3333333 1.333333 Basic solution= 0 2 3 0 0 12 with \mathbf{Z} = 23 Simplex multipliers= 1.33333 0 Relative profits= 0.666667 0 -3 0.333333 -1.33333 0 Entering variable is X[3] from set U Substitution Rates= 2 78 $\theta_0 = 3 - 1$ Increasing variables: $\mathbf{H} = \mathbf{\Theta}$ 1.000 Block at value: Decreasing variables: Variable 2 is replaced 6 Block at value: 1.500 by variable 3 in B, Block at X[2] at value 1 and variable 2 enters set U

page 21



Optimal partition: B = { 3, 4 }, L = { 1, 5, 6 }, U = { 2 }

Optimal Solution i 1 2 3 4 5 6 X[i] 0.000 4.000 1.667 1.000 0.000 0.000 Objective Z= 27.3333