Function of One Variable

Suppose that \(f(x) \), \(f'(x) \), and \(f''(x) \) exist on the closed interval \([a,b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}\). If \(x^* \) and \(x \) are any two distinct points in \([a,b]\), then there exists a point \(z \) between \(x^* \) and \(x \) such that

\[
f(x) = f(x^*) + f'(x^*)(x - x^*) + \frac{f''(z)}{2}(x - x^*)^2
\]
Taylor's Formula

\[
f(x) = f(x^*) + f'(x^*) (x - x^*) + \frac{f''(z)}{2} (x - x^*)^2
\]

If \(f''(x) > 0 \) for all \(x \), and \(f'(x^*) = 0 \), then Taylor's Formula tells us that

\[f(x) = f(x^*) + 0 + \text{a positive number} \quad > \quad f(x^*) \]

That is, \(x^* \) is the point that minimizes the function \(f \).

© D.L. Bricker, U. of IA, 1999

Critical Point

The point \(x^* \) is a *critical point* of a function \(f \) if \(f'(x^*) \) exists and equals zero.

(stationary point)

© D.L. Bricker, U. of IA, 1999
Function of Several Variables

Gradient

vector of first partial derivatives

\[\nabla f(x) = \begin{bmatrix} \frac{df(x)}{dx_1}, \frac{df(x)}{dx_2}, \ldots, \frac{df(x)}{dx_n} \end{bmatrix} \]

Hessian

matrix of second partial derivatives

\[\nabla^2 f(x) = \begin{bmatrix} \frac{d^2f(x)}{dx_1^2} & \frac{d^2f(x)}{dx_1dx_2} & \ldots & \frac{d^2f(x)}{dx_1dx_n} \\ \frac{d^2f(x)}{dx_2dx_1} & \frac{d^2f(x)}{dx_2^2} & \ldots & \frac{d^2f(x)}{dx_2dx_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{d^2f(x)}{dx_ndx_1} & \frac{d^2f(x)}{dx_ndx_2} & \ldots & \frac{d^2f(x)}{dx_n^2} \end{bmatrix} \]

Suppose that \(x^* \) and \(x \) are points in \(\mathbb{R}^n \) and that \(f(x) \) is a function of \(n \) variables with continuous first and second partial derivatives on some open set containing the line segment \([x^*, x]\) joining \(x^* \) and \(x \). Then there exists a \(z \in [x^*, x] \) such that

\[
f(x) = f(x^*) + \nabla f(x^*) \cdot (x - x^*) + \frac{1}{2} (x - x^*) \cdot \nabla^2 f(z) (x - x^*)
\]
QUADRATIC FORM

\[f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j = x^T A x \]

A is not unique, but we can choose A to be symmetric (\(A = \frac{1}{2} \nabla^2 f(x) \))

\[
x_1^2 + x_1 x_2 + 3x_2^2 = [x_1 \ x_2] \begin{bmatrix} 1 & 1/2 \\ 1/2 & 3 \end{bmatrix} [x_1 \ x_2]
\]

\[A_{ij} = \text{coefficient of } x_i^2 \]
\[A_{ij} = \frac{1}{2} \text{ of coefficient of } x_i x_j \]

\(\odot D.L. Bricker, U. of IA, 1999 \)

Which are quadratic forms?

\[x_1 + 2x_2^2 \]
\[x_1 x_2 \]
\[3x_1^2 - x_1 x_2 \]
\[x_1 x_2 - x_2 x_3 + x_1 x_3 \]

\(\odot D.L. Bricker, U. of IA, 1999 \)
\[
\begin{align*}
x_1^2 + x_2^2 &= x_T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x \\
&> 0 \text{ for } x \neq 0 \\
&\text{positive definite}
\end{align*}
\]
\[
\begin{align*}
x_1^2 + 2x_1x_2 + x_2^2 &= x_T \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x \\
&= (x_1 + x_2)^2 \geq 0 \text{ for all } x \\
&\text{positive semidefinite}
\end{align*}
\]
\[
\begin{align*}
x_1^2 - x_2^2 &= x_T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x \\
&\text{indefinite}
\end{align*}
\]

Positive Definite

A square symmetric matrix \(A \) is positive definite if

\[x^T A x > 0 \text{ for all } x \neq 0 \]

Note: a symmetric matrix whose entries are all positive need not be positive definite.

Example: \[A = \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix} \]

Let \(x = [1, -1] \):

\[\begin{bmatrix} 1 & -1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 1 & -1 \end{bmatrix} = -6 < 0 \]
Positive Definite

A symmetric matrix with some negative elements may be positive definite.

Example: \(A = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix} \)

\[x^t A x = x_1^2 - 2x_1x_2 + 4x_2^2 = (x_1 - x_2)^2 + 3x_2^2 > 0 \]

for all \(x \neq 0 \)

© D. L. Bricker, U. of IA, 1999

Positive Semidefinite

A square symmetric matrix \(A \) is positive semidefinite if \(x^t A x \geq 0 \) for all \(x \)

© D. L. Bricker, U. of IA, 1999
A square symmetric matrix A is negative definite if

$x^tAx < 0 \text{ for all } x \neq 0$

A square symmetric matrix A is negative semidefinite if $x^tAx \leq 0 \text{ for all } x$
Indefinite
A square symmetric matrix A is indefinite if

\[\exists x^+ \text{ such that } (x^+)^t A x^+ > 0, \]

and

\[\exists x^- \text{ such that } (x^-)^t A x^- < 0 \]

i.e., if it is neither positive semidefinite nor negative semidefinite.

Diagonal Matrices

A diagonal matrix D is

- **positive definite** if $D_i > 0$ for all i
- **positive semidefinite** if $D_i \geq 0$ for all i
- **negative definite** if $D_i < 0$ for all i
- **negative semidefinite** if $D_i \leq 0$ for all i

\[x^t D x = \sum_{i=1}^{n} D_i x_i^2 \]
Suppose that a symmetric matrix A is reduced to upper triangular form by use of the elementary row operation

- Add to any row a scalar multiple of another row without using
- Multiply any row of the matrix by a (positive or negative) scalar
- Interchange two rows of the matrix

Then A is

- **positive definite** if $U_i > 0 \; \forall \; i$
- **positive semidefinite** if $U_i \geq 0 \; \forall \; i$
- **negative definite** if $U_i < 0 \; \forall \; i$
- **negative semidefinite** if $U_i \leq 0 \; \forall \; i$
WHY?

Consider the quadratic form $x^T A x = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$

$x^T A x = x^T L D L^T x = [L^T x]^T D [L^T x] = y^T D y = \sum_{i=1}^{n} D_i y_i^2$

where $y = L^T x$

If $D_i \geq 0$, then, $x^T A x \geq 0$ for all x

If $D_i > 0$, $x^T A x > 0$ for all $x \neq 0 (\Rightarrow y \neq 0)$

etc.

A is positive
semidefinite

A is positive
definite