Introduction to Simulation

This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu

Definitions

System: collection of *entities*

which act & interact

toward accomplishment

of some end.

State of a system: collection of variables

necessary to describe

the status of the system

at any time

Definitions

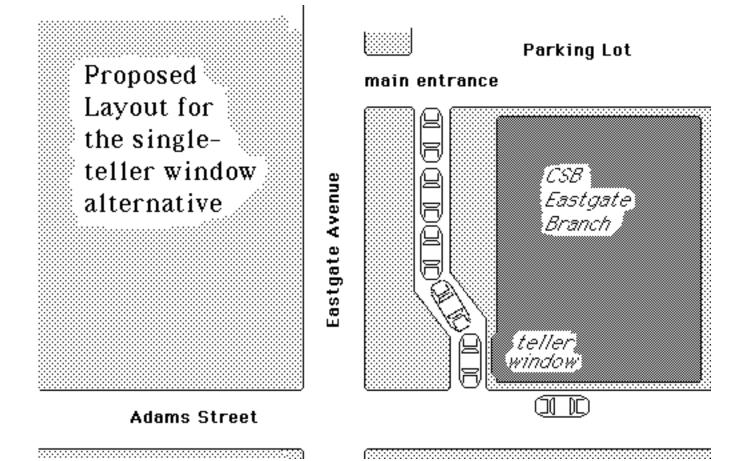
Monte Carlo simulation (static simulation)

representation of a system at a particular point in time

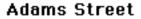
Dynamic simulation

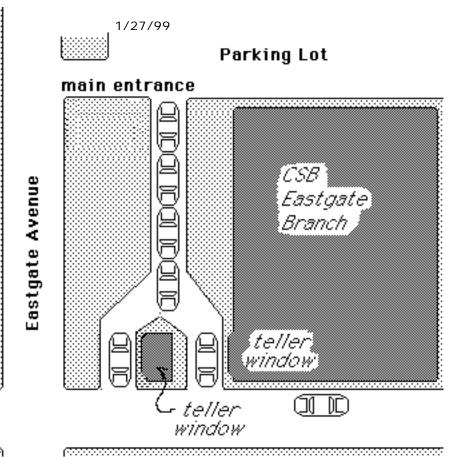
representation of a system as it "evolves" in time

Example of Dynamic Simulation Model


Centerville State Bank plans to include drive-in teller service at a new branch location on Eastgate Avenue.

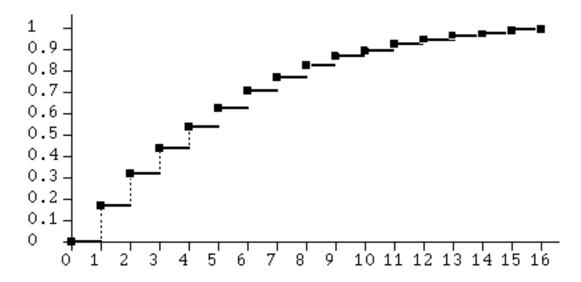
Should 1 or 2 drive-in windows be included?


Intro to Simulation 1/27/99 page 3


To be considered:

- single window saves construction costs and reduces the number of tellers required
- board of directors feels that customers should not have to wait more then 5 minutes for service.
- site layout provides room in the driveway for only 4 waiting cars (in addition to the car or cars being served.) Any additional cars would back up into the main entrance of the parking lot.

Proposed
Layout for
the 2-teller
window
alternative

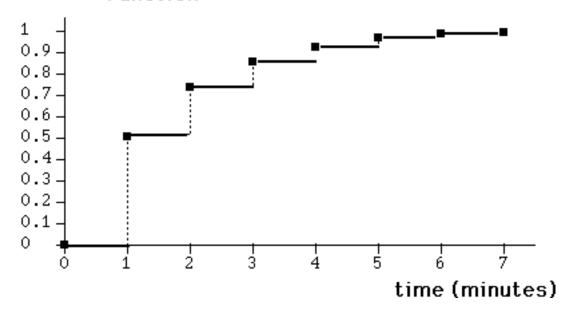


Data was
collected
on 100
customers
arriving at
an existing
branch office:

Mean value was 5.00 minutes

Time between arrivals (min.)	Frequency	Cumulative Frequency
1	17	17
2	15	32
3	12	44
4	10	54
5	9	63
6	8	71
7	6	77
8	6	83
9	4	87
10	3	90
11	3	93
12	2	95
13	2	97
14	1	98
15	1	99
16	1	100

Interarrival Time Cumulative Distribution Function



Data collected on 100 customers arriving at an existing branch office:

Service Time (min.)	Frequency	Cumulative Frequency
1	51	51
2	23	74
3	12	86
4	7	93
5	4	97
6	2	99
7	1	100

Mean value was 2.00 minutes

Service Time Cumulative Distribution Function

Using the inverse transformation method, the interarrival & service times for 25 cars were randomly generated:

i T _i a T _i s	i T _i a T _i
1 5 2 2 6 4 3 1 3 4 2 1 5 2 4 7 3 1 8 13 3 9 4 1 10 5 1 11 8 1 12 8	14 1 1 15 2 4 16 5 1 17 6 4 18 3 1 19 6 1 20 7 1 21 11 1 22 1 7 23 4 2 24 1 1 25 3 2

Ti^a = time between arrivals of customers i-1 and i

Ti^s = service time for

Events in this simulation are either

- arrival of a car
- departure of a car

We will maintain two tables:

- a "log" of events which have occurred
- a schedule of events to occur in the future

When an event is "logged", this may trigger the scheduling of other events:

Event being logged	Event to be schedulted
arrival of car #i	arrival of car #i+1 if server was not previously busy, the departure of car #i
departure of car #i	departure of car #i+1

Car i	T _i a	T _i s
12345678901234567890 11234517890	56122133454841256367•••	24312413111121414111

	е	vent lo)g		
event #	event type		server status		
0	initialize	0	idle	0	

Cinitialize the event log

	event schedule		
enter _	time	event	
event 🖙	5	#1 arrives	

car i	T _i a	Τįs
123456789011234567890 112314567890	56122133454841256367•••	2431241311112141111

event log					
event #	event type		server status		
0	initialize	0	idle	0	
1	#1 arrive	s 5	busy	0	

Remove the first event time time schedule, and 11 # schedule next arrival & next departure

event schedule		
time	event	
5	#1armves	
7	#1 departs	
11	#2 arrives	

Car i	T _i a	T _i s
123456789011234567890 11234567890 11234567890 ••	56122133454841256367•••	24312413111121414111

event log				
event #	event type		server status	
0	initialize	0	idle	0
1	#1 arrive	s 5	busy	0
2	#1 depart	ts 7	idle	0

Remove the next event from the schedule, and log it.

event schedule						
time	event					
5	#1armwes					
	#1 departs					
11	#2 arrives					

Car	T: ^a	T.S
i	'1	'1
12345678901234567890 111234567890 11234567890	56122133454841256367•••	24312413111121414111

event log								
event #			server status					
0	initialize	0	idle	0				
1	#1 arrives	5	busy	0				
2	#1 departs	s 7	idle	0				
3	#2 arrives	11	busy	0				

Remove the next event from the schedule, and logit. event schedule

Schedule departure & next arrival.

	elic schedale
time	event
<u></u>	#1armves
₹	#1departs
331	#2arriyes
15	#2 departs
12	#3 arrives

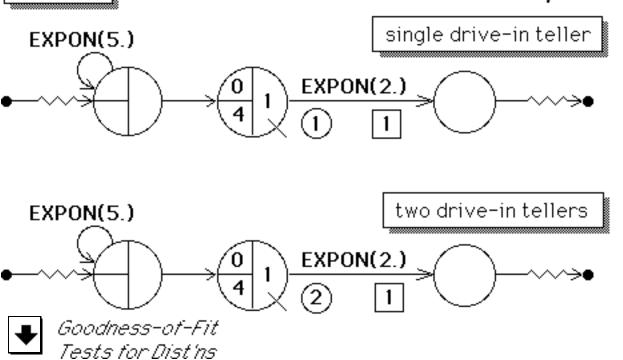
Car i	T _i a	Τįs
12345678901234567890	56122133454841256367•••	24312413111121414111•••

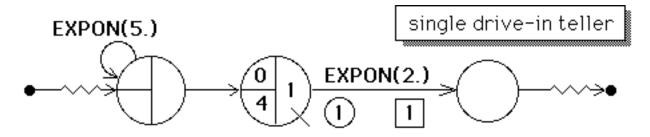
event log								
event #	event o type		server status					
0	initialize	0	idle	0				
1	#1 arrives	5	busy	0				
2	#1 departs	3 7	idle	0				
3	#2 arrives	11	busy	0				
4	#3 arrives	12	busy	1				
			•					

Remove the
next event
from the
schedule, and
log it.
Schedule
เลกาวโพลไ

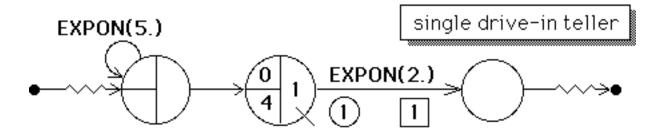
time	event
5	#1 arrives
7	#1 departs
***	#2arriyes
15	#2 departs
2	#3 arriyes
14	#4 arrives

By running this simulation model, the bank can estimate


- the frequencies of customer waiting times
- the frequency with which the main entrance will be blocked due to overflow of the gueue

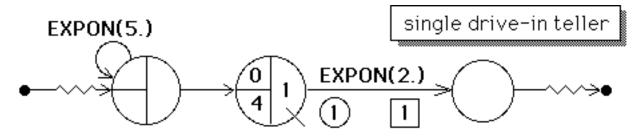

Simulation models may be programmed and executed on a computer, using either a general-purpose language (e.g., Pascal or Fortran), or languages designed specifically for simulation, e.g.,

SLAM SIMSCRIPT GPSS SIMULA SIMAN DYNAMO


& many others

SLAM utilizes network model of the system.

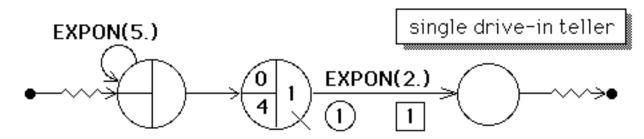

```
GEN, BRICKER, BANKTELLERS, 2/1/1993......72;
LIM, 1, 1, 50;
INIT, 0, 480;
                                     Simulate 480 minutes
NETWORK:
                                     of operation of the
      CREATE, EXPON(5.0);
      QUE(1),0,4;
                                     drive-in bank window
      ACT(1)/1,EXPON(2.0);
      TERM:
                                      (assumes exponential
      END:
                                      distribution for both
FIN:
                                      interarrival & service
```



times.)

INTERMEDIATE RESULTS

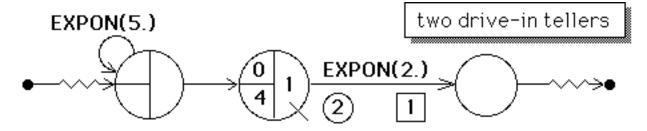
WARNING - ENTITY LOST AT TIME 0.4081E+03
FILE 1 IS FULL.

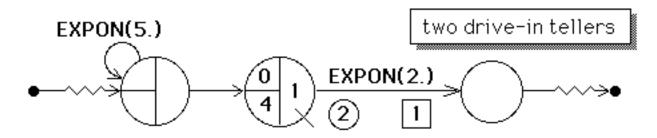
WARNING - ENTITY LOST AT TIME 0.4120E+03
FILE 1 IS FULL.


At 408.1 and 412 minutes into the simulation, two cars arrived while the waiting line is full (with 4 cars)!

FILE STATISTICS

FILE NUMBER	LABEL/TYPE	AVERAGE LENGTH	STANDARD DEVIATION		0011111111	AVERAGE WAIT TIME
1	QUEUE	0.359	0.856	4	0	1.580
2	CALENDAR	1.448	0.497	3	1	2.594

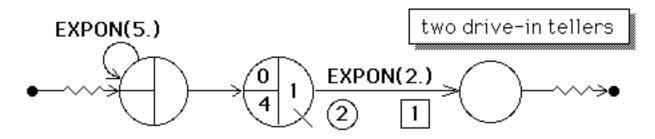

(The maximum waiting time was not reported.)



SERVICE ACTIVITY STATISTICS

	T LABEL OR ART NODE							MAX BSY TME/SER	
1	QUEUE	1	0.448	0.50	0	0.00	17.35	29.23	109
Fortran	STOP								

The teller was busy 44.8% of the time.



FILE STATISTICS

FILE NUMBER	LABEL/TYPE	AVERAGE LENGTH	STANDARD DEVIATION	MAXIMUM LENGTH		AVERAGE WAIT TIME
1	QUEUE	0.024	0.155	2	0	0.096
2	CALENDAR	1.519	0.683	4	3	2.883

At no time did the queue have more than 2 cars (not including those being served).

SERVICE ACTIVITY STATISTICS

SER AVERAGE STD CUR AVERAGE MAX IDL MAX BSY ACT ACT LABEL OR ENT NUM START NODE CAP UTIL BLOCK TME/SER TME/SER UTIL DEV CNT OUEUE 2 0.519 0.68 2 0.00 2.00 2.00 116 Fortran STOP

Average # of busy tellers was 0.519, so that each teller was busy about $0.5 \times 0.519 = 26\%$ of the time.

Simulation

- Creating a model of a real or proposed system for the purpose of evaluating the system's behavior for various conditions
- Allows the analyst to draw inferences about new systems without building them, or make changes to existing systems without disturbing them.
- Allows system interactions (system integration) to be analyzed
- Permits managers to visualize the operation of a new or existing system under a variety of conditions.
- Helps understand how various components interact with each other, and how they effect overall system performance.

Why Simulate?

- Provide general insight into the nature of a process
- Identify specific problems or problem areas with a system
- Develop specific policies or plans for a process
- Test new concepts and/or systems prior to implementation
- Improve the effectiveness of a system

Simulation...

- cannot optimize... it can only describe the results of "Whatif" questions
- cannot give accurate results if the data are inaccurate
- cannot describe system characteristics that have not been explicitly modeled
- cannot solve problems... it can only provide information
- cannot provide easy answers to complex problems

Intro to Simulation 1/27/99 page 17

Project Management: The 'Players'

Simulation project team

System design team

Data/information sources

Implementation team

Contractors

Decision-makers/ management

The Simulation Process

DEFINE -- functional specification

FORMULATE -- the simulation model

VERIFY/VALIDATE -- input from all players

ANALYZE -- statistical evaluation

RECOMMEND -- alternatives to the decision-maker(s)

Intro to Simulation 1/27/99 page 18

Why Have a Functional Specification?

- Defines the problem completely
- Requires system understanding from the start
- Provides vision of the task
- Defines how the simulation will be used
- Defines all assumptions of the simulation model
- Identifies data requirements
- Identifies required output statistics and analysis

A Functional Specification

- Objectives
- Assumptions
- Inputs
- Outputs
- Control logic
- Level of detail
- Flexibility
- Analysis

Model Formulation

One or more analysists

Data structure requirements

Model control logic

Level of detail

Flexibility

Statistical requirements

Verification & Validation

VERIFICATION: Ensuring that the model behaves in the way it was intended

VALIDATION: Ensuring that the model behaves the same as the real system

Requires:

- Involvement of all the players
- Use of animation and data
- · Reasonable and robust model