Lagrangian Relaxation

Define a multiplier $\lambda_i \geq 0$ for each point i

The Lagrangian relaxation is

$$\text{Minimize} \quad \sum_{j=1}^{N} c_j x_j + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} x_j\right)$$

subject to \(x_j \in \{0,1\} \) for each $j=1, 2, \ldots N$
\[\Phi(\lambda) = \text{Minimum} \sum_{j=1}^{N} C_j X_j + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} X_j \right) \]

subject to \(X_j \in \{0,1\} \) for each \(j=1, 2, \ldots N \)

\[\Phi(\lambda) = \text{Minimum} \sum_{j=1}^{N} \left(C_j - \sum_{i=1}^{M} \lambda_i a_{ij} \right) X_j + \sum_{i=1}^{M} \lambda_i \]

Interpretation: We no longer require that each point be covered. Rather, we offer an incentive \(\lambda_i \) for each point \(i \) which is covered.

The Lagrangian relaxation is trivial to solve:

\[\Phi(\lambda) = \text{Minimum} \sum_{j=1}^{N} \left(C_j - \sum_{i=1}^{M} \lambda_i a_{ij} \right) X_j + \sum_{i=1}^{M} \lambda_i \]

\[= \sum_{j=1}^{N} \text{Minimum} \left\{ 0, C_j - \sum_{i=1}^{M} \lambda_i a_{ij} \right\} + \sum_{i=1}^{M} \lambda_i \]

That is, we select set \(j \) if its "reduced cost",

\[\bar{C}_j = C_j - \sum_{i=1}^{M} \lambda_i a_{ij} \], is \(\leq 0 \).
Suppose that X^* is the optimal solution of the original set-covering problem. Then for any $\lambda \geq 0$,

$$
\Phi(\lambda) = \text{Minimum} \quad \sum_{j=1}^{N} c_j x_j + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} x_j\right)
$$

$$
\leq \sum_{j=1}^{N} c_j x_j^* + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} x_j^*\right)
$$

That is, the solution of the Lagrangian relaxation provides a lower bound on Z^*.

$$
\leq \sum_{j=1}^{N} c_j x_j^* = Z^*
$$

© D. L. Birkner, U. of IA, 1998

Lagrangian Dual Problem

For each $\lambda \geq 0$, $\Phi(\lambda)$ is a lower bound on the optimum of the SCP.

The Lagrangian Dual problem is to select λ so as to obtain the greatest lower bound:

$$
\text{Maximize} \quad \Phi(\lambda) \\
\lambda \geq 0
$$

© D. L. Birkner, U. of IA, 1998
What is the nature of the dual objective function $\Phi(\lambda)$?

In solving the Lagrangian relaxation, we must choose from among 2^N different collections of sets, each specified by a vector \vec{X}^k, $k=1, 2, \ldots, 2^N$

$$
\Phi(\lambda) = \text{Minimum} \sum_{X_j \in \{0,1\}} \sum_{j=1}^{N} C_j X_j + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} X_j \right)
$$

$$
= \text{minimum} \left\{ \sum_{j=1}^{N} C_j \hat{X}_j^k + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} \hat{X}_j^k \right) \right\}
$$

$\Phi(\lambda)$ is the minimum (the "lower envelope") of a set of 2^N linear functions!
One method of searching for the optimal dual variables is to step in the direction of a subgradient of the dual objective function, $\Phi(\lambda)$.

Φ is concave and piecewise linear!
At iteration t, let λ^t be the current value of the dual variables, and let \hat{X}^t be the solution of the Lagrangian relaxation. That is,

$$
\Phi(\lambda^t) = \sum_{j=1}^{N} C_j \hat{X}_j + \sum_{i=1}^{M} \lambda_i^t \left(1 - \sum_{j=1}^{N} a_{ij} \hat{X}_j^t\right)
$$

Then Δ is a subgradient of Φ at λ^t, with elements

$$
\delta_i = \left(1 - \sum_{j=1}^{N} a_{ij} \hat{X}_j^t\right)
$$

Let the step taken be $\lambda^{t+1} = \lambda^t + \alpha \Delta$

Rather than selecting the stepsize α by a one-dimensional search method (e.g., golden-section or Fibonacci search, which requires many evaluations of the function $\Phi(\lambda + \alpha \Delta)$), "subgradient optimization" selects the stepsize

$$
\alpha = \tau \frac{Z^* - \Phi(\lambda)}{\|\Delta\|^2}
$$

where Z^* is an upper bound, and τ is in the interval $(0,2]$
If stepsiz parameter τ is exactly 1, then the step would take us to the point where the line reaches Z^*.

If there is a "gap", then when near the optimum, i.e., when Δ is small, the step may be too large!
Dual Ascent

Subgradient optimization is guaranteed to converge to the optimal dual value, but not monotonically.

In "dual ascent", the dual objective increases monotonically at each iteration (i.e., never decreases). However, it may not converge to the optimal dual value.

Choose a multiplier whose subgradient element is nonzero, i.e., \(\lambda_i \) such that \(0 \neq \delta_i = \left(1 - \sum_{j=1}^{N} a_{ij} \hat{x}_j\right) \)

(This means that point \(\# i \) is not covered, if \(\delta_i = 1 \), or else covered by more than one set if \(\delta_i < 0 \))

© D. L. Brickner, U. of IA, 1998
If a multiplier is adjusted upward or downward by an amount which leaves the signs of the reduced costs unchanged, then the \(\hat{X} \) solving the Lagrangian relaxation is unchanged, although \(\Phi(\lambda) \) changes.

\[
\Phi(\lambda) = \sum_{j=1}^{N} C_j \hat{X_j} + \sum_{i=1}^{M} \lambda_i \left(1 - \sum_{j=1}^{N} a_{ij} \hat{X_j} \right)
\]

\[
\Phi(\lambda) = \sum_{j=1}^{N} C_j \hat{X_j} + \sum_{i=1}^{M} \lambda_i \delta_i
\]

Consider first the case \(\delta_i = +1 \), i.e., point \(#i \) is uncovered.

As we increase \(\lambda_i \), the dual objective function increases with slope \(+1 \), until the reduced cost of a set which covers \(i \) becomes zero or negative. At that value of \(\lambda_i \), the slope of \(\Phi(\lambda) \) becomes zero.
In the case \(\delta_i < 0 \), point \(i \) has multiple covering sets:

As we decrease \(\lambda_i \), the dual objective function increases, and the reduced cost of each set covering point \(i \) increases. Sets drop out of the solution when their reduced cost reaches zero.