

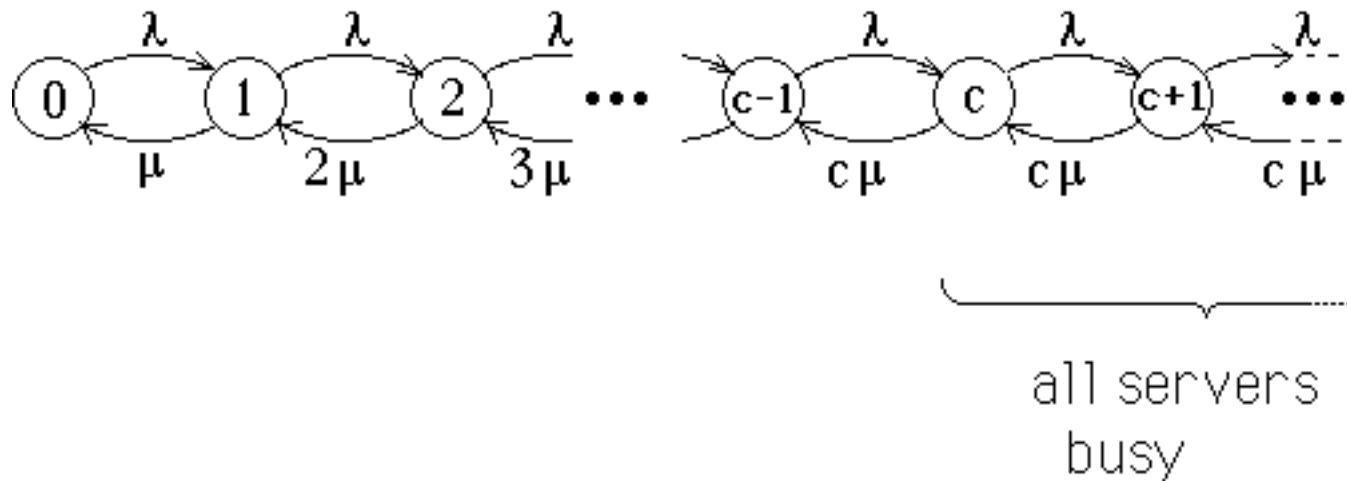
Introduction to QUEUEING : M/M/c

author

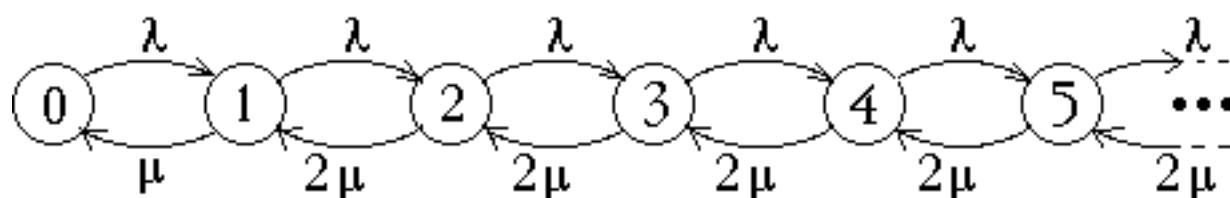
This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@caen.uiowa.edu

M/M/c

- Arrival & Service processes are *Memoryless*, i.e.,
interarrival times have *Exponential*
distribution with mean $1/\lambda$
service times have *Exponential*
distribution with mean $1/\mu$
- Number of servers is c
- Capacity of queueing system is infinite

M/M/c**Birth/Death Model**

©Dennis Bricker, U. of Iowa, 1997

Example: M/M/2

$$\begin{aligned}\frac{1}{\pi_0} &= 1 + \frac{\lambda}{\mu} + \left(\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{2\mu}\right) + \left(\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{2\mu}\right)^2 + \left(\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{2\mu}\right)^3 + \dots \\ &= 1 + \left(\frac{\lambda}{\mu}\right) \left[1 + \left(\frac{\lambda}{2\mu}\right) + \left(\frac{\lambda}{2\mu}\right)^2 + \left(\frac{\lambda}{2\mu}\right)^3 + \dots \right]\end{aligned}$$

geometric series

$$\frac{1}{\pi_0} = 1 + \left(\frac{\lambda}{\mu}\right) \underbrace{\left[1 + \left(\frac{\lambda}{2\mu}\right) + \left(\frac{\lambda}{2\mu}\right)^2 + \left(\frac{\lambda}{2\mu}\right)^3 + \dots\right]}_{\text{geometric series}}$$

geometric series

converges to $\frac{1}{1 - \lambda/2\mu}$ *if* $\lambda/2\mu < 1$

$$\frac{1}{\pi_0} = 1 + \left(\frac{\lambda}{\mu}\right) \frac{1}{1 - \lambda/2\mu}$$

©Dennis Bricker, U. of Iowa, 1997

M/M/c If the arrival rate λ is less than the combined rate $c\mu$ at which the servers can work, then the system will have a *steady state* distribution, given by:

$$\pi_0 = \frac{1}{\sum_{n=0}^{c-1} \frac{(c\rho)^n}{n!} + \frac{(c\rho)^c}{c!} \frac{1}{1-\rho}} \quad \pi_j = \frac{(c\rho)^j}{j!} \pi_0, \quad j=1, 2, \dots, c$$

$$\pi_j = \frac{(c\rho)^j}{c! c^{j-c}} \pi_0, \quad j=c, c+1, \dots$$

where $\rho = \frac{\lambda}{c\mu} < 1$

©Dennis Bricker, U. of Iowa, 1997

Probability that all servers are busy:

$$\sum_{j \geq c}^{\infty} \pi_j = \frac{(c\rho)^c}{c!(1-\rho)} \pi_0 \quad \text{where } \rho = \frac{\lambda}{c\mu} < 1$$

This, then, is the probability that an arriving customer will be required to wait for service!

©Dennis Bricker, U. of Iowa, 1997

M/M/c

Average Length of Queue
(not including those being served)

$$L_q = \sum_{j \geq c}^{\infty} (j - c) \pi_j \quad \text{where } \pi_j = \frac{(c\rho)^j}{c! c^{j-c}} \pi_0, \quad j=c, c+1, \dots$$

$$L_q = \sum_{j=0}^{\infty} j \pi_{c+j} = \sum_{j=0}^{\infty} j \pi_0 \frac{(c\rho)^{c+j}}{c! c^j} = \pi_0 \frac{(c\rho)^c}{c!} \sum_{j=0}^{\infty} j \rho^j$$

$$\rho = \frac{\lambda}{c\mu}$$

©Dennis Bricker, U. of Iowa, 1997

$$L_q = \pi_0 \frac{(c\rho)^c}{c!} \sum_{j=0}^{\infty} j \rho^j = \pi_0 \frac{(c\rho)^c}{c!} \rho \underbrace{\sum_{j=0}^{\infty} j \rho^{j-1}}_{\text{derivative of a geometric series}}$$

$$\sum_{j=0}^{\infty} j \rho^{j-1} = \frac{d}{d\rho} \sum_{j=0}^{\infty} \rho^j = \frac{d}{d\rho} \left(\frac{1}{1-\rho} \right) = \frac{1}{(1-\rho)^2}$$

$$L_q = \pi_0 \frac{(c\rho)^c}{c!} \rho \frac{1}{(1-\rho)^2}$$

©Dennis Bricker, U. of Iowa, 1997

Average Length of Queue

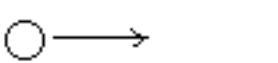
$$L_q = \frac{\rho (c\rho)^c}{c!} \pi_0 \left(\frac{1}{1-\rho} \right)^2$$

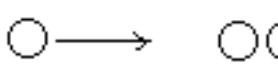
Once L_q is computed, then we can compute (using Little's formula)

$$W_q = \frac{L_q}{\lambda}, \quad W = W_q + \frac{1}{\mu}, \quad \& \quad L = \lambda W$$

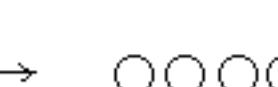
Example: Pooled vs. Separate Servers

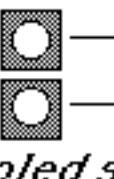
Compare two queueing systems:

$\lambda=4/\text{hr}$  \rightarrow $\rightarrow \mu=5/\text{hr}$

$\lambda=4/\text{hr}$  \rightarrow $\rightarrow \mu=5/\text{hr}$

separate queue per server

$\lambda=8/\text{hr}$  \rightarrow $\rightarrow \mu=5/\text{hr}$

 $\rightarrow \mu=5/\text{hr}$
 $\rightarrow \mu=5/\text{hr}$

pooled servers

©Dennis Bricker, U. of Iowa, 1997

two M/M/1 queues

$\lambda=4/\text{hr}$ \rightarrow $\rightarrow \mu=5/\text{hr}$

$\lambda=4/\text{hr}$ \rightarrow $\rightarrow \mu=5/\text{hr}$

separate queue per server

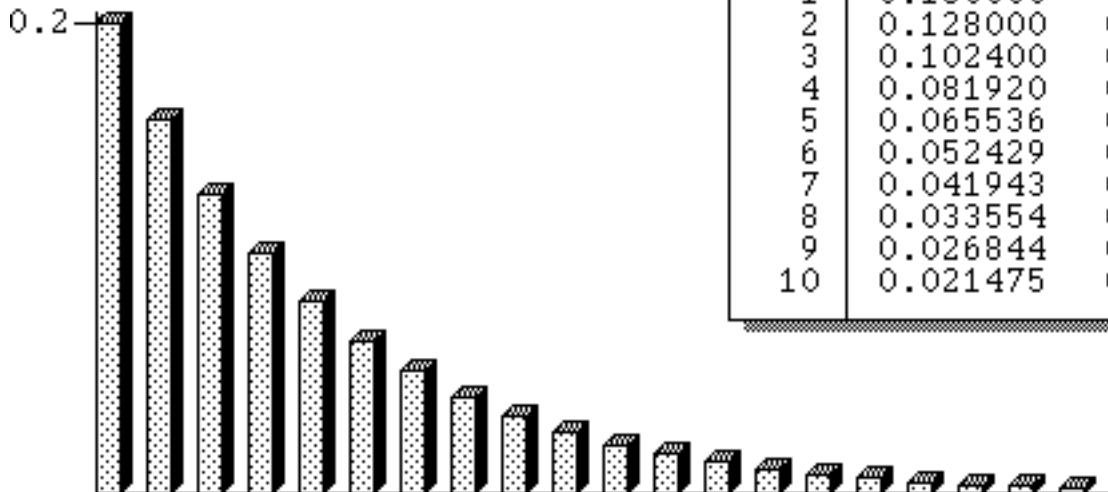
Average waiting time: $W_q = \frac{\lambda}{\mu(\mu - \lambda)}$

$$W_q = \frac{4/\text{hr}}{(5/\text{hr})(5-4)/\text{hr}} = 0.8 \text{ hr}$$

(48 minutes)

©Dennis Bricker, U. of Iowa, 1997

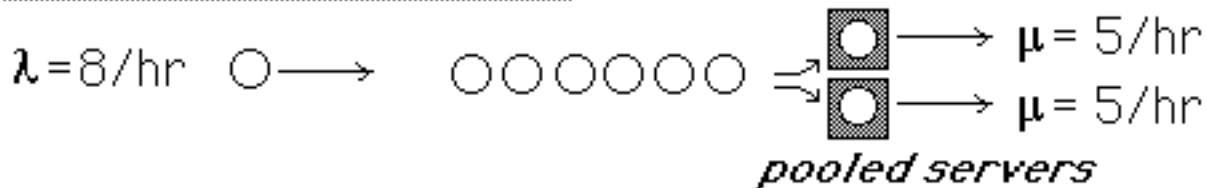
Steady-State Distribution



i	Pi	CDF
0	0.200000	0.200000
1	0.160000	0.360000
2	0.128000	0.488000
3	0.102400	0.590400
4	0.081920	0.672320
5	0.065536	0.737856
6	0.052429	0.790285
7	0.041943	0.832228
8	0.033554	0.865782
9	0.026844	0.892626
10	0.021475	0.914101

©Dennis Bricker, U. of Iowa, 1997

single M/M/2 queue



Rather than maintaining a separate queue for each server, customers enter a common queue.

$$\rho = \frac{\lambda}{2\mu} = \frac{8/\text{hr}}{2 \times 5/\text{hr}} = 0.8 < 1 \quad \text{which implies that a steady state exists!}$$

©Dennis Bricker, U. of Iowa, 1997

single M/M/2 queue

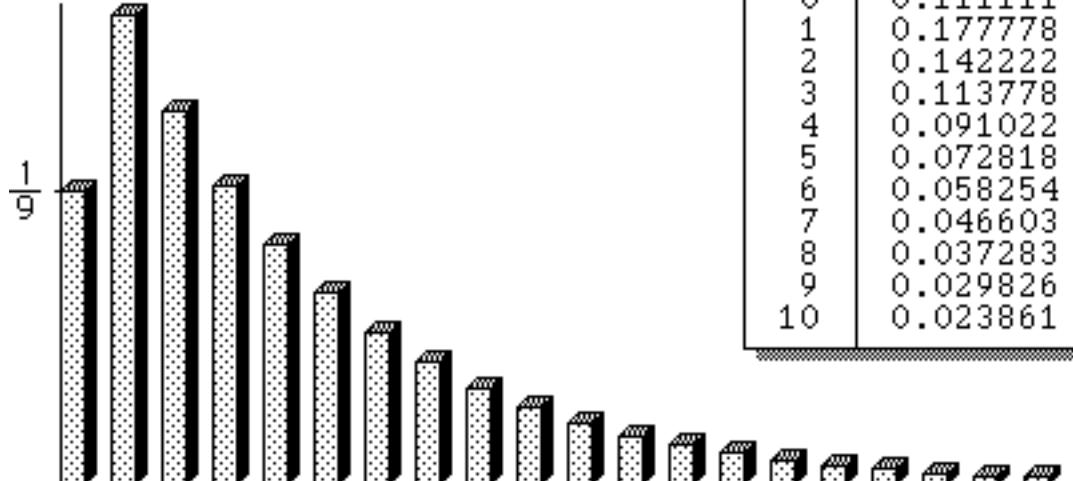
$$\pi_0 = \frac{1}{\frac{(2 \times 0.8)^0}{0!} + \frac{(2 \times 0.8)^1}{1!} + \frac{(2 \times 0.8)^2}{2! (1 - 0.8)}} = \frac{1}{1 + 1.6 + 6.4} = \frac{1}{9}$$

$$\pi_0 = 0.111111$$

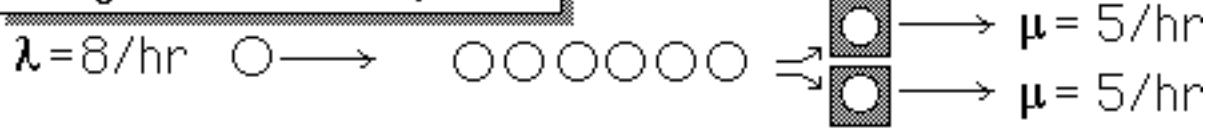
$$\pi_1 = \frac{(c\rho)^1}{1!} \pi_0 = \frac{(2 \times 0.8)^1}{1!} \frac{1}{9} = 0.1777777$$

$$P\{\text{both servers busy}\} = 1 - \pi_0 - \pi_1 = 0.7111111$$

Steady-State Distribution



i	Pi	CDF
0	0.111111	0.111111
1	0.177778	0.288889
2	0.142222	0.431111
3	0.113778	0.544889
4	0.091022	0.635911
5	0.072818	0.708729
6	0.058254	0.766983
7	0.046603	0.813586
8	0.037283	0.850869
9	0.029826	0.880695
10	0.023861	0.904556

single M/M/2 queue

$$L_q = \frac{\rho}{1 - \rho} P\{\text{both servers busy}\}$$

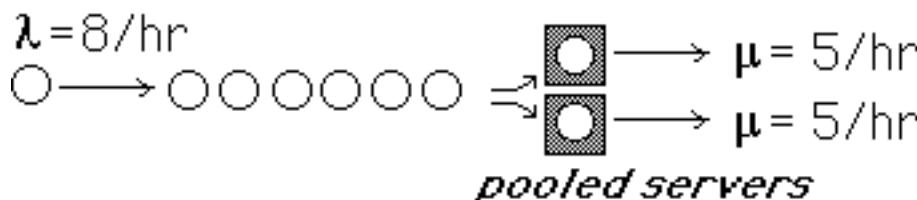
$$= \frac{0.8}{0.2} (0.71111111) = 2.844444444$$

$$W_q = \frac{L_q}{\lambda} = 0.35156 \text{ hr.} = 21.1 \text{ minutes}$$

©Dennis Bricker, U. of Iowa, 1997

separate queue per server

$$W_q = 0.8 \text{ hr.} \\ = 48 \text{ min.}$$



$$W_q = 0.352 \text{ hr.} \\ = 21.1 \text{ min.}$$

By pooling the servers, the average waiting time per customer is reduced by approximately 56%

©Dennis Bricker, U. of Iowa, 1997