

Jackson Network of Queues

author

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dennis-bricker@uiowa.edu

Jackson Network of Queues

a collection of queues with *exponential* service times in which customers travel from one queue to another according to a Markov chain--

Jackson Network of Queues

- the network consists of N service centers, where service center i contains c_i identical servers and a queue with *infinite* capacity
- customers from outside the network (called *exogenous* customers) arrive at service center i according to a Poisson process with rate λ_i . (*Arrival processes are independent.*)

©Dennis Bricker, U. of Iowa, 1997

Jackson Network of Queues

- after receiving service at center i , a customer leaves the network with probability $p_{i0} \geq 0$ or goes instantaneously to service center j with probability p_{ij}
(*independent of number of customers at that center or number in the system*)

©Dennis Bricker, U. of Iowa, 1997

Jackson Network of Queues

- customers arriving at center i are served FIFO (first-in-first-out), and service times are exponentially distributed with mean $1/\mu_i(s_i)$ where s_i = # of customers at center i .

(Service rate at each center may depend only on the number of customers at that center.)

©Dennis Bricker, U. of Iowa, 1997

Let $X_i(t)$ = # of customers at service center i at time t

State of system: $s = (s_1, s_2, \dots, s_N)$

$P(s; t) = P(s_1, s_2, \dots, s_N; t) = P\{X_i(t) = s_i, i = 1, 2, \dots, N\}$

*Steady-state
distribution*

$$\pi_s = \lim_{t \rightarrow \infty} P(s; t)$$

Jackson Networks of queues have the very nice property that the steady-state distribution has a **product** form:

$$\pi_s = \pi_{s_1}^1 \times \pi_{s_2}^2 \times \dots \times \pi_{s_N}^N$$

©Dennis Bricker, U. of Iowa, 1997

Open Jackson Networks

$\lambda_i > 0$ for some i

$p_{j0} \neq 0$ for some j

At one or more service centers, customers may arrive from outside network &/or depart the network

Closed Jackson Networks

$\lambda_i = 0$ & $p_{i0} = 0 \forall i$

customers circulate among service centers, but no exogenous arrivals or departures

©Dennis Bricker, U. of Iowa, 1997

- If $\lambda_i > 0$ for some i , the network is *open*.

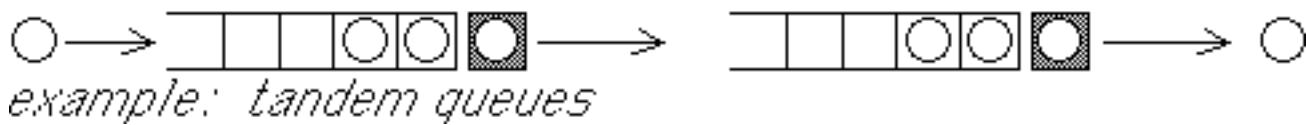
*Customers may arrive from outside the system, and may depart the system.
The total number of customers in the network fluctuates.*

server

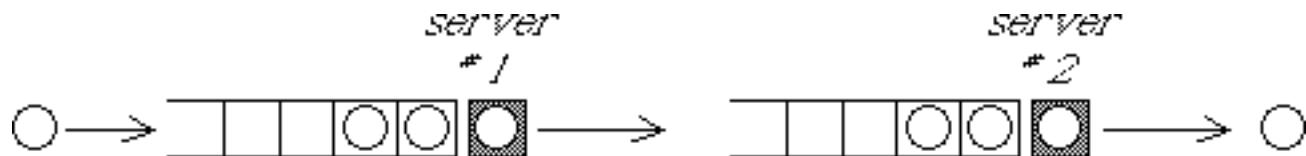
*1

server

*2



©Dennis Bricker, U. of Iowa, 1997



Recall that for the two infinite-capacity tandem queues, the balance equations were satisfied by

$$\pi_{S_1, S_2} = \pi_{S_1}^1 \times \pi_{S_2}^2 \quad (product-form distribution)$$

where

$$\pi_{S_i}^i = (1 - \rho_i) \rho_i^{S_i}, \quad \rho_i = \lambda / \mu_i$$

is the steady-state distribution for the M/M/1 queue!

©Dennis Bricker, U. of Iowa, 1997

In the case of tandem queues, we know the average arrival rate at the second queue to be λ .

More generally, when arrivals at a service center may be exogenous or from any of the other centers, we must compute the composite arrival rate of each center by solving "traffic equations".

©Dennis Bricker, U. of Iowa, 1997

Traffic Equations

Let λ_i = exogenous arrival rate
at service center i
 α_i = *departure rate in steady state at service center i*
 $\left. \begin{matrix} \text{average rate} \\ \text{of departures} \end{matrix} \right\} = \left\{ \begin{matrix} \text{average rate} \\ \text{of arrivals} \end{matrix} \right\}$

Then

$$\alpha_i = \lambda_i + \sum_{j=1}^N \alpha_j p_{ji} \quad \text{for } i=1,2,\dots,N$$

Given λ_i and p_{ij} , this system of linear equations has a unique, nonnegative solution

©Dennis Bricker, U. of Iowa, 1997

Traffic Equations

Since, in steady state, the composite rate of arrivals (external & internal) must equal the rate of departure of each center,

α_i = *composite arrival rate in steady state at service center i*

$$\alpha_i = \lambda_i + \sum_{j=1}^N \alpha_j p_{ji} \quad \text{for } i=1,2,\dots,N$$

©Dennis Bricker, U. of Iowa, 1997

Jackson's Theorem

and

$$\pi_s = \prod_{i=1}^N \Psi_i(s_i)$$

$$\rho_i \equiv \frac{\alpha_i}{c_i \mu_i}$$

where

$$\Psi_i(n) = \begin{cases} \Psi_i(0) \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \Psi_i(0) \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases}$$

and $\Psi_i(0)$ is a normalizing constant which is chosen to yield

$$\sum_{n=0}^{\infty} \Psi_i(n) = 1 \text{ for each } i.$$

©Dennis Bricker, U. of Iowa, 1997

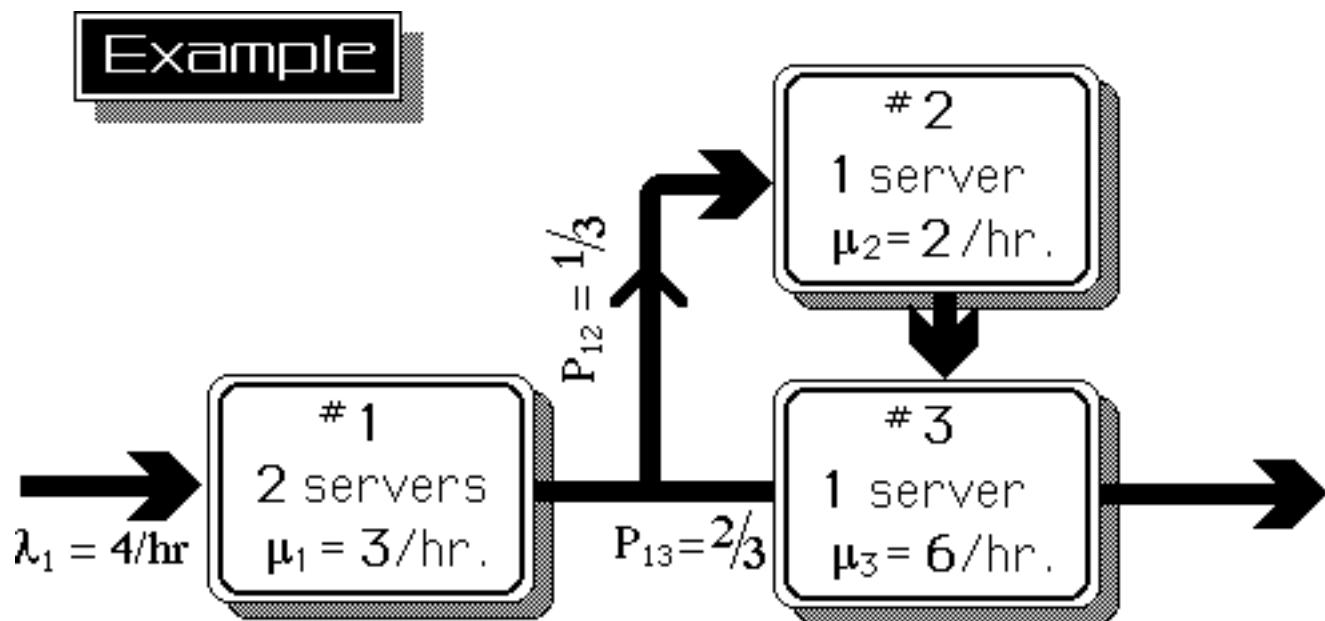
Compare

$$\Psi_i(n) = \begin{cases} \Psi_i(0) \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \Psi_i(0) \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases}$$

with the steady-state distribution for the $M/M/c$ queue, with infinite capacity:

$$\pi_n = \begin{cases} \pi_0 \frac{(c\rho)^n}{n!} & , n=1, 2, \dots c \\ \pi_0 \frac{(c\rho)^n}{c! c^{n-c}} & , n=c+1, c+2, \dots \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997



©Dennis Bricker, U. of Iowa, 1997

Traffic equations

1	2	3	ω
1	0 0	4	
-0.33333	1 0	0	
-0.66667	-1 1	0	

$$\alpha_i = \lambda_i + \sum_j \alpha_j p_{ij} \quad \forall i \quad (\omega = \text{exogenous arrival rates})$$

i.e.,
$$\begin{cases} \alpha_1 = \lambda_1 \\ \alpha_2 = 0 + \alpha_1 p_{12} \\ \alpha_3 = 0 + \alpha_1 p_{13} + \alpha_2 \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

Solution of Traffic equations: Net Arrival Rates:

node	1	2	3
rate	4	1.3333	4
min c	2	1	1

i.e.,
$$\left\{ \begin{array}{l} \alpha_1 = 4/\text{hr} \\ \alpha_2 = \frac{4}{3} / \text{hr} \\ \alpha_3 = 4/\text{hr} \end{array} \right.$$

©Dennis Bricker, U. of Iowa, 1997

Steady-State Distribution

i	1	2	3
0	0.200000	0.333333	0.333333
1	0.266667	0.222222	0.222222
2	0.177778	0.148148	0.148148
3	0.118519	0.098765	0.098765
4	0.079012	0.065844	0.065844
5	0.052675	0.043896	0.043896
6	0.035117	0.029264	0.029264
7	0.023411	0.019509	0.019509
8	0.015607	0.013006	0.013006
...			

For example,

$$\pi_{0,0,0} = \pi_0^1 \times \pi_0^2 \times \pi_0^3$$

$$= \frac{1}{5} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{45}$$

$$= 0.022222$$

$$\pi_{1,1,1} = \pi_1^1 \times \pi_1^2 \times \pi_1^3$$

$$= \frac{4}{15} \times \frac{2}{9} \times \frac{2}{9} = \frac{16}{1215}$$

$$= 0.0131687$$

©Dennis Bricker, U. of Iowa, 1997

Expected number of visits
to nodes of a Jackson network,
beginning at any node,
before unit exits the network

		1	2	3
		f	r	o
f	r	1	1	0.33333
r	o	1	0	1
o	m	2	0	1
m	3	3	0	1

©Dennis Bricker, U. of Iowa, 1997

i	Lq	Wq	L	W
1	1.066667	0.266667	2.400000	0.600000
2	1.333333	1.000000	2.000000	1.500000
3	1.333333	0.333333	2.000000	0.500000

Lq=length of queue

Wq=waiting time

L=# at node

W=time at node

(times are time/visit to node) (hours)

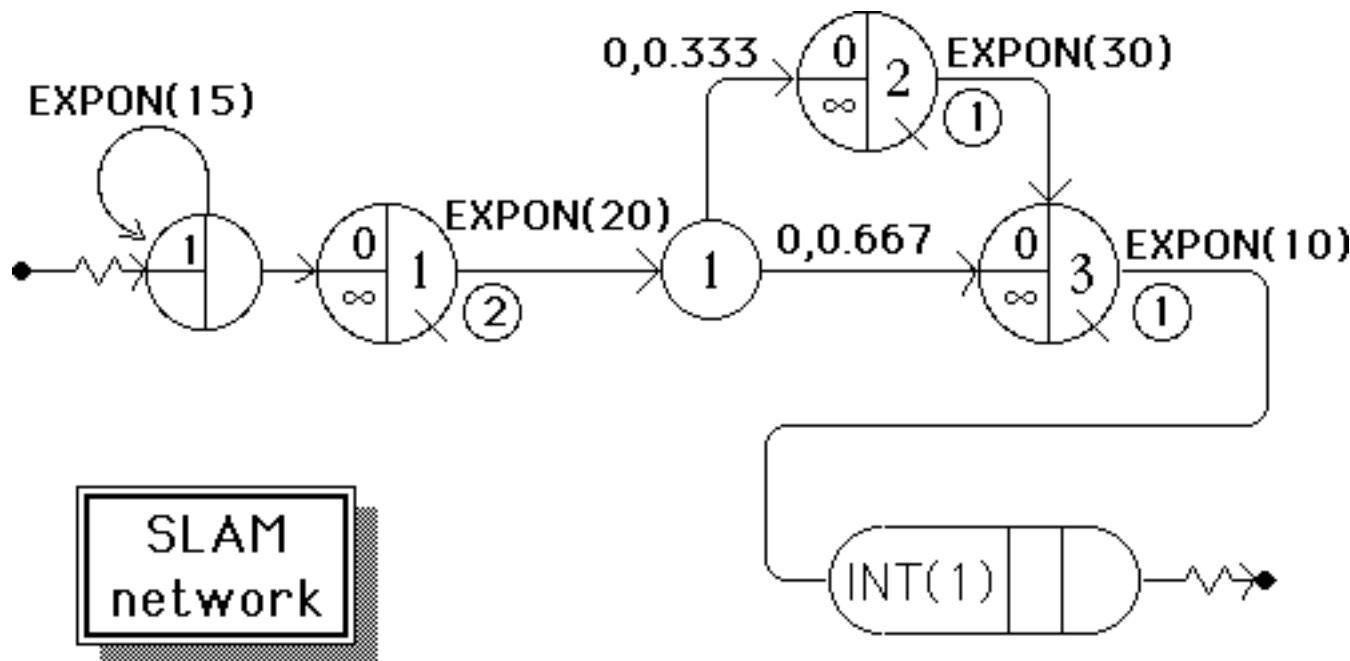
Totals: Sum of Lq= 3.7333, Sum of L (L_total) = 6.4

Average total time in system (by Little's Law):

Wtotal = L_total ÷ sum of exogenous arrival rates (4)

Wtotal = 1.6

©Dennis Bricker, U. of Iowa, 1997



©Dennis Bricker, U. of Iowa, 1997

*** FILE STATISTICS ***

FILE		AVERAGE	STD	MAX	CURRENT	AVERAGE
NUMBER		LENGTH	DEV.	LENGTH	LENGTH	WAIT TIME
1	QUEUE	1.079	2.254	10	3	15.892
2	QUEUE	2.529	2.577	9	0	112.391
3	QUEUE	1.182	1.918	9	7	17.672

*** SERVICE ACTIVITY STATISTICS ***

ACT	ACT	LABEL	OR	SER	AVG	STD	CUR	MAX	IDL	MAX	BSY	ENT
NUM	START	NODE		CAP	UTIL	DEV	UTIL	TME/SER		TME/SER	CNT	
1		QUEUE		2	1.298	0.79	2	2.00		2.00	321	
2	Q2	QUEUE		1	0.775	0.42	0	214.25		1000.71	108	
3	Q3	QUEUE		1	0.659	0.47	1	164.87		372.59	313	

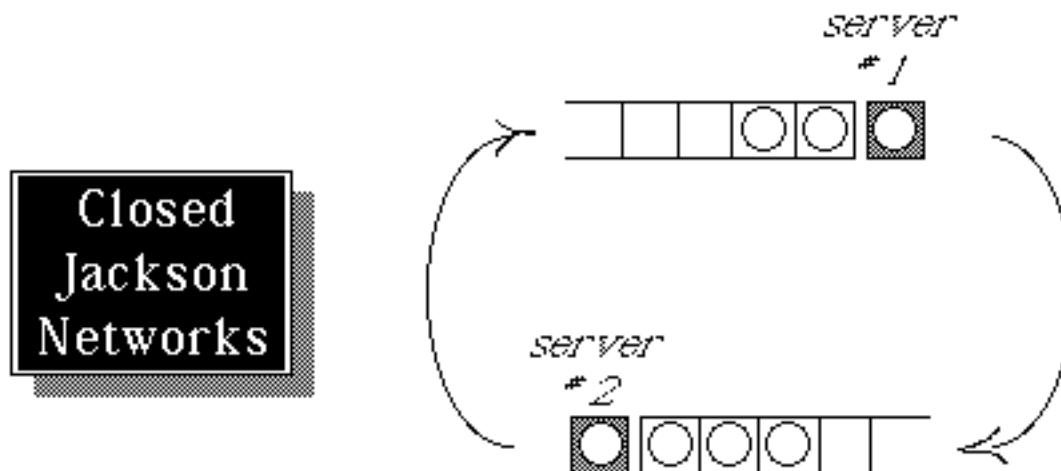
** STATISTICS FOR VARIABLES BASED ON OBSERVATION **

MEAN	STANDARD	COEFF OF	MINIMUM	MAXIMUM	NO. OF
VALUE	DEVIATION	VARIATION	VALUE	VALUE	OBS
0.112E+03	0.105E+03	0.935E+00	0.526E+01	0.483E+03	313

 Average time in system
 112 minutes = 1.86667 hours

©Dennis Bricker, U. of Iowa, 1997

- If $\lambda_i = 0$ & $p_{io} = 0 \forall i$ the network is *closed*.



No exogenous arrivals or departures from the system... the total number of customers in the system remains constant!

©Dennis Bricker, U. of Iowa, 1997

Traffic Equations

Let α_i = *departure rate in steady state at service center i*

$$\left. \begin{array}{l} \text{average rate} \\ \text{of departures} \end{array} \right\} = \left\{ \begin{array}{l} \text{average rate} \\ \text{of arrivals} \end{array} \right.$$

Then

$$\alpha_i = \sum_{j=1}^N \alpha_j p_{ji} \quad \text{for } i=1,2,\dots,N$$

Because the system of equations is homogeneous, the solution is not unique! Any multiple of a solution is also a solution.

©Dennis Bricker, U. of Iowa, 1997

Jackson's Theorem for Closed Networks

Let $M = \#$ of customers in the system

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ be any nonnegative, nonzero solution of the traffic equations, and let $\rho_i \equiv \frac{\alpha_i}{c_i \mu_i}$

The possible states of the system are elements of

$$S = \{ s \mid \sum_{i=1}^N s_i = M \}$$

©Dennis Bricker, U. of Iowa, 1997

Then the steady state probabilities are given by

$$\pi_s = K \prod_{i=1}^N \Psi_i(s_i) \quad \text{for } s \in S$$

where

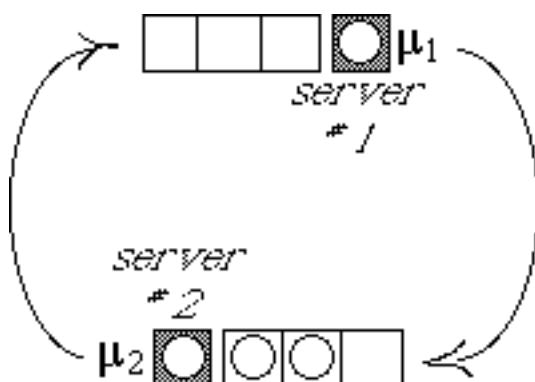
$$\Psi_i(n) = \begin{cases} \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases}$$

product form of joint dist'n

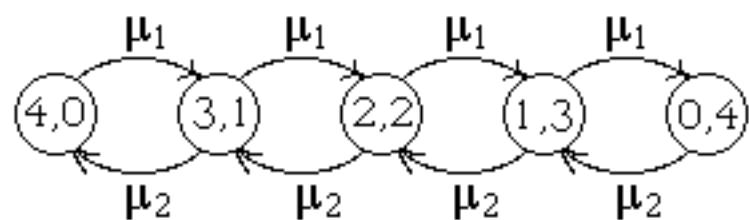
and K is a "normalizing constant"

such that $\sum_{s \in S} \pi_s = 1$

©Dennis Bricker, U. of Iowa, 1997



Recall 2 cyclic queues with 4 customers:



Transition diagram is equivalent to that of M/M/1/4 queue, with

Is this of the product form?

Closed Jackson Networks

$$\pi_{s_2} = \rho^{s_2} \left[\frac{1 - \rho}{1 - \rho^5} \right], \quad \rho = \frac{\mu_1}{\mu_2}$$

©Dennis Bricker, U. of Iowa, 1997

The steady-state distribution for this cyclic network of 2 queues & 4 customers is also of the product form:

©Dennis Bricker, U. of Iowa, 1997

$$\begin{array}{l} 4 = M = \# \text{ units in system} \\ 2 = N = \# \text{ nodes in system} \end{array}$$

i	n	μ
1	1	1
2	1	2

Let

$$\mu_1 = 1/\text{hr.}$$

$$\mu_2 = 2/\text{hr.}$$

©Dennis Bricker, U. of Iowa, 1997

Traffic equations

1	2	b
1	-1	0
-1	1	0
1	1	1

(Solution is not unique; last row normalizes α)

Solution of Traffic equations: Arrival Rates:

node	1	2
rate	0.5	0.5

©Dennis Bricker, U. of Iowa, 1997

PSI

i	$\zeta \Psi_1$		$\zeta \Psi_2$	
	1	2	1	2
0	1.000000	1.000000		
1	0.500000	0.250000		
2	0.250000	0.062500		
3	0.125000	0.015625		
4	0.062500	0.003906		

Normalizing constant K: 8.2581

of states = 5

$$\Psi_i(n) = \begin{cases} \frac{(c_i \rho_i)^n}{n!} & \text{if } n \leq c_i \\ \frac{(c_i \rho_i)^n}{c_i! c_i^{n-c_i}} & \text{if } n \geq c_i \end{cases}$$

©Dennis Bricker, U. of Iowa, 1997

i	1	2
0	1.000000	1.000000
1	0.500000	0.250000
2	0.250000	0.062500
3	0.125000	0.015625
4	0.062500	0.003906

Calculating the Normalizing Constant K

$$\sum_{s \in S} \Psi_1(s_1) \times \Psi_2(s_2) = (1.0)(0.003906) + (0.5)(0.015625) + (0.25)(0.0625) + (0.125)(0.25) + (0.0625)(1.0) \\ = 0.1210935$$

So, in order that the probabilities will sum to 1.0,

$$K = \frac{1}{0.1210935} = 8.2580816$$

©Dennis Bricker, U. of Iowa, 1997

For large values of M (# customers) and N (# of service centers), the number of elements of the state set S will be extremely large, making the computation of K by enumerating the possible states very burdensome.

There are, however, recursive methods of computing K which avoid much of the computational burden.

©Dennis Bricker, U. of Iowa, 1997

Once K is found, then the probability of each state may be computed:

Steady-State Distribution

#	1	2	PI
1	0	4	0.032258
2	1	3	0.064516
3	2	2	0.12903
4	3	1	0.25806
5	4	0	0.51613

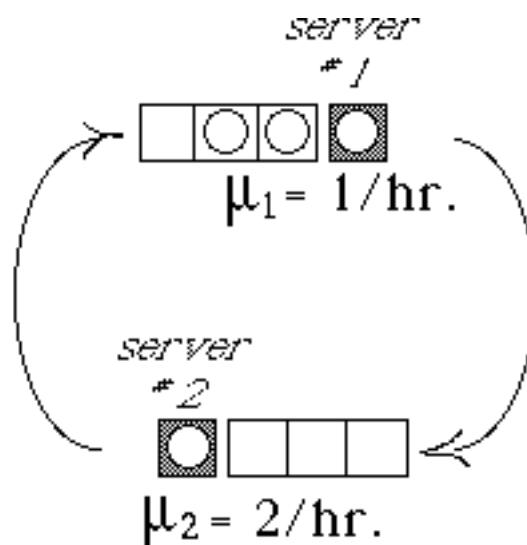
$$\pi_{0,4} = K \Psi_1(0) \times \Psi_2(4) \\ = 8.2580816 \times 1.0 \times 0.003906$$

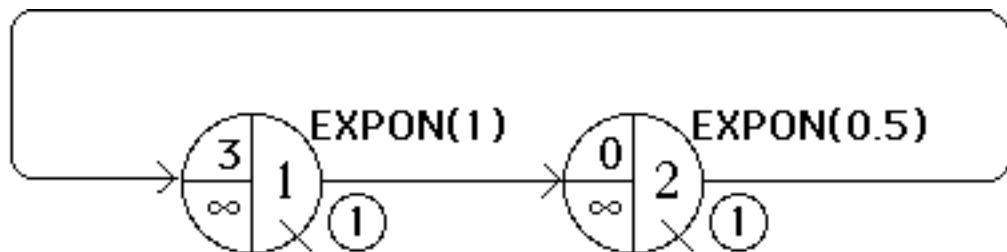
Average Numbers at Nodes

i	L
1	3.16129032
2	0.83870968

Unlike the case of the open Jackson Network, we do not know the average arrival rates at the service centers, and so we cannot use Little's Formula to compute the average waiting time at each service center!

Let's try forming a SLAM model of the 2 cyclic queues:





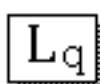
3 customers initially in queue #1 implies that server #1 is busy, i.e., that there are initially 4 customers in the network.

©Dennis Bricker, U. of Iowa, 1997

*** FILE STATISTICS ***

FILE NUMBER	AVERAGE LENGTH	STD DEV.	MAX LENGTH	CURRENT LENGTH	AVERAGE WAIT TIME
----------------	-------------------	-------------	---------------	-------------------	----------------------

1	Q1 QUEUE	2.178	1.005	3	3	2.204
2	Q2 QUEUE	0.363	0.749	3	0	0.368



*** SERVICE ACTIVITY STATISTICS ***

ACT NUM	ACT START	LABEL NODE	OR	SER CAP	AVG UTIL	STD DEV	CUR UTIL	MAX TME/SER	IDL TME/SER	MAX BSY	ENT CNT
1	Q1	QUEUE		1	0.968	0.10	1	3.00		191.49	4740
2	Q2	QUEUE		1	0.491	0.50	0	10.74		12.10	4740

©Dennis Bricker, U. of Iowa, 1997