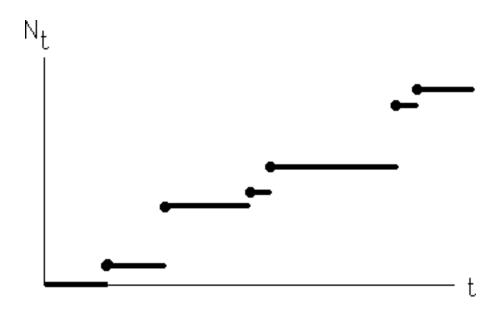


This Hypercard stack copyright by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu

Arrival Process

a stochastic process {N_t; t≥0} such that

- N_t is non-decreasing
- N_t increases by jumps only
- N_t is right-continuous
- N_O = 0



Poisson Process

An arrival process $\{N_t; t \ge 0\}$ such that:

- each jump is of magnitude 1
- for any s,t≥0, the difference N_{s+t} - N_t is independent of past history {N_u; u≤t}
- for any s,t≥0, the distribution of N_{s+t} - N_t is independent of t

For any s,t \geq 0, the distribution of $N_{s+t} - N_t$ is $P\{N_{s+t} - N_t = k\} = e^{-\lambda s} (\lambda s)^k / k!$

i.e. the distribution of number of arrivals in *any* interval of length **s** is **Poisson**.

The parameter λ is the **arrival rate**.

Time of Arrivals

Let {Nt; t≥0} be a Poisson process.

Define another (discrete-parameter, continuous-value) stochastic process

$$\{T_k; k=1, 2, ...\}$$

by T_k = time of jump #k of N_t .

For any n≥0, the distribution of the time between arrival #n and #n+1 is

$$P\{T_{n+1} - T_n \le t \mid T_1, T_2, ...T_n\} =$$

$$= P\{T_1 \le t\} = 1 - e^{-\lambda t}, t \ge 0$$

$$(exponential \ distribution)$$

Memorylessness of the exponential distribution

 $P{T_1 > t+s \mid T_1 > t} = P{T_1 > s}, s,t \ge 0$ that is, knowing that an interarrival time has already lasted **t** time units does not alter the probability of its lasting another **s** time units.

Superposition of Poisson Processes

Let $\{L_t; t \ge 0\}$ and $\{M_t; t \ge 0\}$ be two poisson processes with arrival rates λ and μ , respectively.

The **superposition** of processes L_t and M_t is a new stochastic process N_t defined by $N_t = L_t + M_t$

 N_t is itself a **Poisson process** with arrival rate $v = \lambda + \mu$.

Decomposition of a Poisson process

Let {N_t; t≥0} be a **Poisson** process with rate **λ**.

Let {X_n; n=1,2,...} be a **Bernoulli**process with probability **p** of success at each trial,

and let S_n= # successes in first n trials.

Suppose that the n^{th} trial is performed at the time T_n of the n^{th} arrival, and define two new stochastic processes M_t (#successes) and L_t (# failures) by $M_t = S_{Nt}$, and $L_t = N_t - M_t$

The processes M_t and L_t are **Poisson** with arrival rates $p\lambda$ and $(1-p)\lambda$, respectively.

D.L.Bricker, U.of IA, 1999

Compound Poisson Process

In a Poisson process, the jumps must be of magnitude 1; in the Compound Poisson process, jumps may be of any size (positive &/or negative). The magnitudes of successive jumps must be i.i.d. random variables, independent of t.

Example:

Arrivals of customers into a store form a Poisson process, and the amount of money spent by the n^{th} customer is a random variable X_n . The stochastic process $\{Y_t; t \ge 0\}$ defined by $Y_t = total$ sales during $\{0,t\}$ is a compound Poisson process.