

This Hypercard stack was prepared by: Dennis Bricker,

Dept. of Industrial Engineering,

University of Iowa,

lowa City, Iowa 52242.

e-mail: dbricker@icaen.uiowa.edu

Deviational Variables

Recall that to convert an inequality to an equality constraint, we introduce slack or surplus variables:

$$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n \le b$$

becomes
$$a_{i1}X_1 + a_{i2}X_2 + ... + a_{in}X_n + S_i^- = b_i$$

$$S_i \ge 0$$
 (S_i is a **slack** variable)

while
$$a_{i1}X_1 + a_{i2}X_2 + ... + a_{in}X_n \ge b_i$$

becomes
$$a_{i1}X_1 + a_{i2}X_2 + ... + a_{in}X_n - S_i^{\dagger} = b_i$$

 $S_i^{\dagger} \ge 0$ (S_i^{\dagger} is a **surplus** variable)

Suppose that we have as a goal the satisfying of a linear constraint

$$a_{i1}X_1 + a_{i2}X_2 + \dots + a_{in}X_n \cong b_i$$

We can introduce **deviational** variables (essentially slack & surplus variables):

$$a_{i1}X_1 + a_{i2}X_2 + ... + a_{in}X_n + u_i - v_i = b_i$$

 $u_i \ge 0$ (underachievement)
 $v_i \ge 0$ (overachievement)

and use as an objective:

Minimize u_i + v_i

As alternatives, we could

minimize underachievement alone, i.e. Min $\,u_{i}\,$ or

minimize overachievement alone, i.e., Min vi

If we have several such goals, we can minimize the sum of **all** the deviational variables:

Minimize
$$u_1 + v_1 + \cdots + u_m + v_m$$

s.t. $a_{11}X_1 + a_{12}X_2 + \cdots + a_{1n}X_n + u_1 - v_1 = b_1$
 $a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n + u_2 - v_2 = b_2$
 \vdots
 $a_{m1}X_1 + a_{m2}X_2 + \cdots + a_{1n}X_n + u_m - v_m = b_m$
 $X_j \ge 0 \ \forall j, u_i \ge 0 \ \& v_i \ge 0 \ \forall i$

At the optimal solution, at most one of each pair of deviational variables (u_i , v_i) will be basic (i.e., nonzero).

For example, although $u_i = 5$, $v_i = 2$ will give a deviation of $u_i - v_i = 3$ (a net underachievement), the associated cost is $u_i + v_i = 7$ which is more than the cost (namely, 3) of the equivalent choice $u_i = 3$, $v_i = 0$.

Example: designing an educational program

Decision variables: X_1 = hours of classroom work

 X_2 = hours of laboratory work

Suppose that each hour of work involves the following small--group experience and individual problem-solving experience

	classroom	laboratory
small-group	12 minutes	29 minutes
indi∨idual	19 minutes	11 minutes

System constraint ("hard constraint"): total program hours limited to 100

$$X_1 + X_2 \le 100$$

Goal constraints ("soft constraints"):

 each student should spend as close as possible to 25% of the maximum program time working in small groups

$$12 X_1 + 29 X_2 \cong 1500$$
 (minutes)

 each student should, if possible, spend one-third of the time on individual problem-solving activities

$$19 X_1 + 11 X_2 \approx 2000 \text{ (minutes)}$$

The **goal programming** model:

$$\begin{array}{lll} \mbox{Minimize} & U_1 + V_1 + U_2 + V_2 \\ \mbox{s.t.} & X_1 + & X_2 & \leq 100 & \mbox{total hrs} \\ & 12 \, X_1 + 29 \, X_2 + U_1 - V_1 = 1500 & \mbox{small-gp} \\ & 19 \, X_1 + 11 \, X_2 + U_2 - V_2 = 2000 & \mbox{individual} \\ & X_j \geq 0, \, j = 1, 2 \, ; \, U_i \geq 0, \, i = 1, 2 \, ; \, V_i \geq 0, \, i = 1, 2 \, \end{array}$$

LINDO output

OBJECTIVE FUNCTION VALUE 1) 241.176500

VARIABL	E VALUE	REDUCED COST
U1	.000000	.529412
V1	.000000	1.470588
U2	241.176500	.000000
V2	.000000	2.000000
X1	82.352940	.000000
Х2	17.647060	.000000

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

	CURRENT	ALLOWABLE	ALLOWABLE
VARIABLE	COEF	INCREASE	DECREASE
U1	1.000000	INFINITY	.529412
V1	1.000000	INFINITY	1.470588
U2	1.000000	1.125000	1.000000
V2	1.000000	INFINITY	2.000000
X1	.000000	14.448280	9.000000
X2	.000000	9.000000	25.000000

Weighting the Deviation Variables

To reflect a preference for under- &/or overachievement of the various goals, one may weight the deviation variables accordingly.

Weighting the Deviation Variables

For example,

if the individual problem-solving experience in the educational program design problem was considered to be 3 times as important as the small-group experience,

and

an underachievement was to be penalized by 5 times the penalty for overachievement, then the objective would become

Minimize $5U_1 + V_1 + 15U_2 + 3V_2$

LINDO output

MIN 5 U1 + V1 + 15 U2 + 3 V2 SUBJECT TO

END

OBJECTIVE FUNCTION VALUE

1) 3000.00000

VARIABLE	VALUE	REDUCED COST
U1	300.000000	.000000
V1	.000000	6.000000
U2	100.000000	.000000
V2	.000000	18.000000
X1	100.000000	.000000
X2	.000000	35.000000

Constructing a Trade-Off Curve

In the educational design problem, with only 2 goal constraints, one may use the *parametric programming* facility of LINDO to construct a trade-off curve:

Maximize small-group experience (T_g)
subject to total program time ≤ 100 hrs
individual problem-solving time ≥T_i
where T_i varies from 0 to 2000

OBJECTIVE FUNCTION VALUE

1) 2900.00000

VARIABLE	E VALUE	REDUCED COST
X1	.000000	17.000000
X2	100.000000	.000000

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	.000000	29.000000
3)	1100.000000	.000000

RIGHTHAND SIDE RANGES

	CURRENT	ALLOWABLE	ALLOWABLE
ROW	RHS	INCREASE	DECREASE
2	100.000000	INFINITY	100.000000
3	.000000	1100.000000	INFINITY

