

A machine operator has responsibility for four semi-automatic machines.

While processing jobs, the machines require no attention from the operator.

When a job is complete, the operator must

- 1) Unload the old job
- 2) Load the new job
- 3) Restart the machine

Average Time Req'd

 $1/\mu_1 = 15$ seconds

 $1/\mu_2=20$ seconds

 $1/\mu_3=10$ seconds

Total 45 seconds

Assuming that the time for each of the three tasks has exponential distribution, we wish to compute

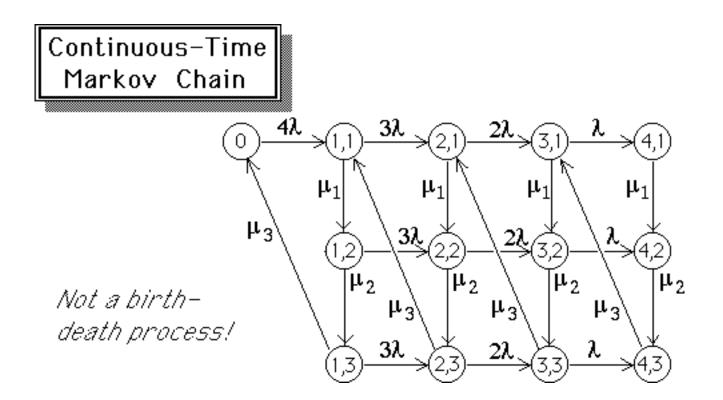
- Steadystate distribution of number of machines in operation
- Average utilization of machines

for jobs with exponentially-distributed processing time, where the mean is 5 minutes

©Dennis Bricker, U. of Iowa, 1997

Mean service time is
$$\sum_{i=1}^{3} \frac{1}{\mu_i} = 45$$
 seconds
Variance of service time is $\sum_{i=1}^{3} (\frac{1}{\mu_i})^2 = 725$

i.e., standard deviation is 26.925824 seconds, substantially less than 45, the standard deviation of exponential dist'n with mean 45 sec.


If $\mu_1 = \mu_2 = \mu_3 = \mu$, then the service time

has Erlang-3 probability distribution.

Continuous-Time Markov Chain

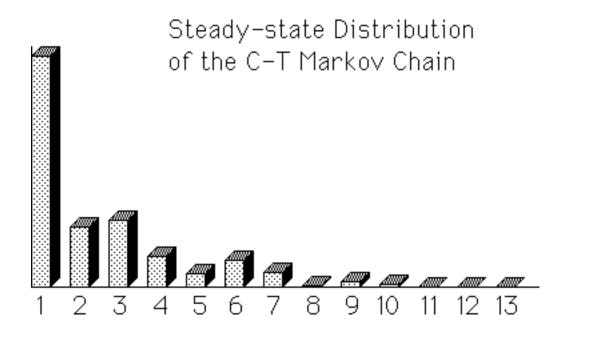
Define states:

- (0) all machines in operation
- (i,j) i machines out of operation with operator currently performing task j

The 13 States of the C-T Markov Chain

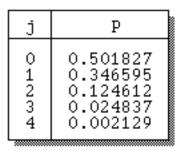
i	j	t
1234567890 1123	0111222333444	0 1 2 3 1 2 3 1 2 3 1 2 3

where i = state number,

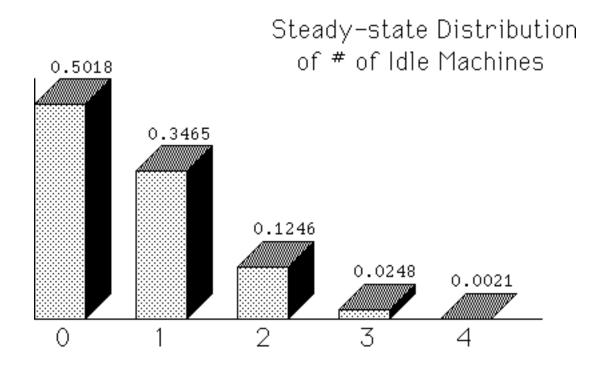

j = # customers in system, and

t = task currently being performed

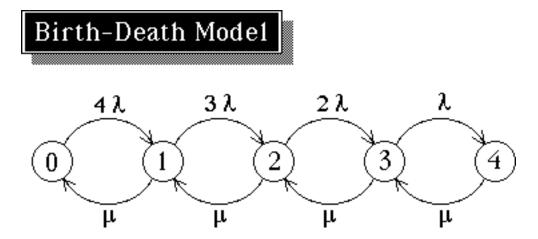
			[fatri:					
	1	2	3	4	5	6	7	8	9	10	11	12	13
1234567890 1123	-0.8 006000000000000000000000000000000000	0.8 4.6 00006000000000000000000000000000000	04 -3.6 000000000000000000000000000000000000	0 -6.6 000000000000000000000000000000000	0.6 0.4 4.4 00 6000	0 0.6 0 -3.4 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.4 0 -4.2 0 0 0 0 6	0 0 0 0 0 0 0 4 .2	0 0 0 0.4 -6.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


i	j	t	PI
1 23 4 5 6 7 8 9 10 11 12 13	0111222333444	0123123123123	0.501827 0.132482 0.147203 0.066910 0.029394 0.060558 0.034660 0.003982 0.012547 0.008307 0.000199 0.001102 0.000828

©Dennis Bricker, U. of Iowa, 1997


10/31/97

Distribution of # jobs in the System


Mean number of jobs in system = 0.6788461127

That is, an average of 0.6788 machines are idle at any time, a utilization of 83.03%

Suppose that we use the M/M/1/N/N "approximation" to this problem.

The variance of the service time of the M/M/1/N/N system is larger.

10/31/97

M/M/1/N/N

Steady-State Distribution

with
$$\lambda = 1/5$$
 per minute

$$\mu = \frac{4}{3}$$
 per minute

i	Pi	
0 1 2 3 4	0.509385 0.305631 0.137534 0.041260 0.006189	

The mean number of customers in the system (including the one being served) is: 0.7292361766

The average arrival rate of customers is 0.6541527647

Using Little's formula, the average time spent in the system, per customer, is W = 1.114779629

©Dennis Bricker, U. of Iowa, 1997

Suppose that expected processing time is 3 minutes, rather than

5 minutes,

i.e.,
$$\lambda = \frac{1}{3}$$

using the original model, i.e., not the birth-death model

j	Р	
0 1 2 3 4	0.291087 0.366554 0.242240 0.087166 0.012954	

Distribution of # jobs in the System

Mean number of jobs in system = 1.16434698

Expected utilization =
$$\frac{4-1.1643}{4}$$
 = 70.89%

page 8

10/31/97

M/M/1/N/N

Steady-State Distribution

with
$$\lambda = 1/3$$
 per minute

$$\mu = \frac{4}{3}$$
 per minute

i	Pi	
01234	0.310680 0.310680 0.233010 0.116505 0.029126	

The mean number of customers in the system (including the one being served) is: 1.242718447

The average arrival rate of customers is 0.9190938511

Using Little's formula, the average time spent in the system, per customer, is W = 1.352112676

Expected utilization =
$$\frac{4-1.242718}{4} = 68.93\%$$

©Dennis Bricker, U. of Iowa, 1997

Suppose that expected processing time is 1 minute, i.e.,

 $\lambda = \frac{1}{10}$

Distribution of # jobs in the System

j	Р	
0 1 2 3 4	0.724170 0.233303 0.038766 0.003612 0.000149	

Mean number of jobs in system = 0.3222666048

Expected utilization =
$$\frac{4-0.32227}{4}$$
 = 91.93 %

Steady-State Distribution

with $\lambda = \frac{1}{10}$ per minute

$$\mu = \frac{4}{3} \quad \text{ per minute}$$

i	Pi	
0 1 2 3 4	0.725487 0.217646 0.048970 0.007346 0.000551	

The mean number of customers in the system (including the one being served) is: 0.3398271981

The average arrival rate of customers is 0.3660172802

Using Little's formula, the average time spent in the system, per customer, is W = 0.9284457769

Expected utilization =
$$\frac{4-0.339827}{4} = 91.5\%$$

©Dennis Bricker, U. of Iowa, 1997

Summary: Expected Utilization, using the 2 model	Summary:	Expected	Utilization,	using	the 2	models
--	----------	----------	--------------	-------	-------	--------

λ	M/M/1/N/N	M/E ₃ /1/N/N
1/3	68.93%	70.89%
1/5	81.77%	83.03%
1/10	91.5%	91.93 %

Assuming exponential dist'n for service time, i.e., a larger variance, leads to an underestimate of the utilization! **|{**]