

©Dennis Bricker, U. of Iowa, 1997

Daily demand for an item is random, with the probability distribution:

d	0	1	2	3	4	
P{D=d}	0.1	0.2	0.3	0.3	0.1	

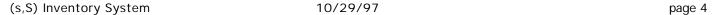
At the end of each day, the stock on hand is observed. If it exceeds s = 2 (the reorder point), no action is taken; otherwise, the inventory is replenished by an amount which brings the level up to S = 6 units at the beginning of the next day.

- What is the average stock-on-hand for this inventory system?
- What is the frequency of replenishments?
- What is the average number of days between stockouts?

Questions

If the initial stock-on-hand is 6,

- what is the expected number of days until a stockout occurs?
- what is the probability that the first stockout occurs 5 days hence?
- what is the probability that a replenishment occurs 3 days hence?
- what is the expected number of stockouts during the next 30 days?
- what is the expected number of replenishments during the next 30 days?


- Markov chain model
- Simulation of the Markov chain
- Powers of the transition probability matrix
- Steadystate distribution
- Expected number of visits
- First-passage probabilities
- Mean first-passage time

©Dennis Bricker, U. of Iowa, 1997

Define the state of the system according to the stock-on-hand (SOH) at the end of the day (before replenishment occurs)

$$X_n = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$$

SOH= 0 1 2 3 4 5 6

Transition Probabilities

$$P_{ij} = P\{X_n = j \mid X_{n-1} = i\}$$

If i>3 (SOH>2), no replenishment occurs:

$$P_{ij} = \begin{cases} P\{D=(i-j)\} & \text{for } j>1 \text{ (SOH>0)} \\ P\{D\geq (i-j)\} & \text{for } j=1 \text{ (SOH=0)} \end{cases}$$

For example,

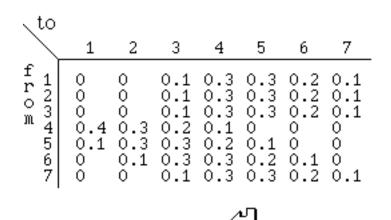
$$P_{42} = P\{D=2\} = 0.3$$

$$P_{41} = P\{D \ge 3\} = P\{D=3\} + P\{D=4\} = 0.3 + 0.1 = 0.4$$

Transitión Probabilities

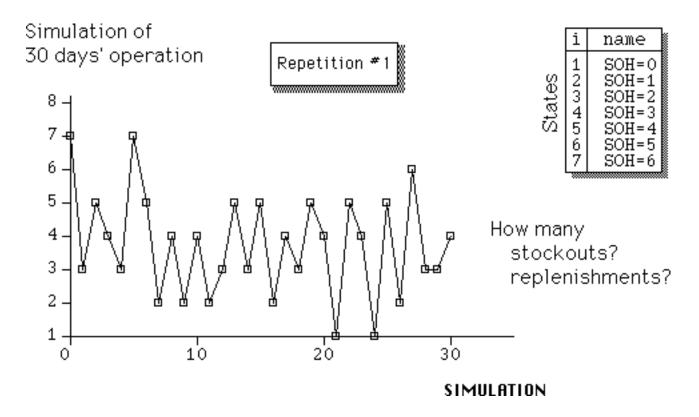
$$P_{ij} = P\{X_n = j \mid X_{n-1} = i\}$$

If $i \le 3$ (SOH ≤ 2), the SOH at the beginning of the next day is 6:

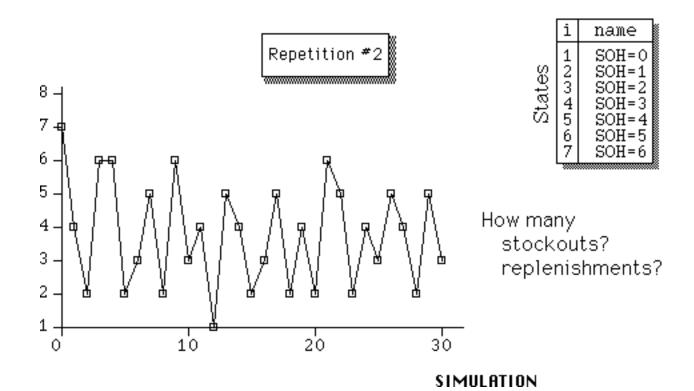

$$P_{ij} = P\{D = (6-[j-1])\}$$

For example,

$$P_{25} = P\{D=2\} = 0.3$$


©Dennis Bricker, U. of Iowa, 1997

Transition Probability Matrix



States

i	name				
1234567	SOH=0 SOH=1 SOH=2 SOH=3 SOH=4 SOH=5 SOH=6				
300000					

©Dennis Bricker, U. of Iowa, 1997

Simulation results

2 2 2 3 2 2 4 5 7 2 2 3 4 5 6 7 4 4 4 ã 1 3 4 3

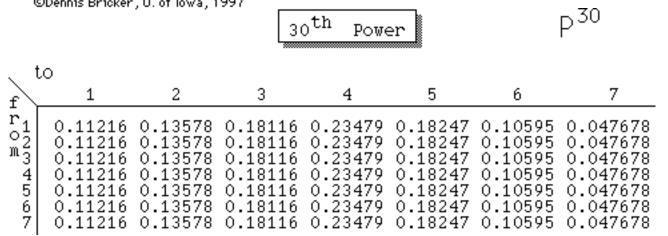
10 simulations of 30 stages, beginning in state #7 (Stock-on-hand=6)

©Dennis Bricker, U. of Iowa, 1997

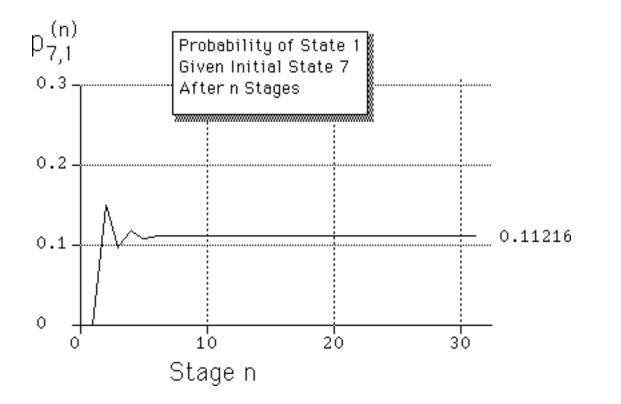
2 nd Power

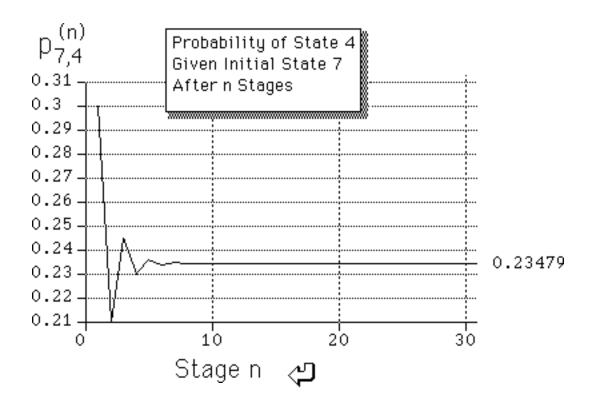
	to					_		_
f		1	2	3	4	5	6	7
rom	1 2 3 4 5 6 7	0.15 0.04 0.09 0.14	0.2 0.2 0.03 0.09 0.16	0.23 0.23 0.11 0.14 0.19	0.21 0.21 0.28 0.25 0.22	0.13 0.13 0.13 0.27 0.22 0.16 0.13	0.06 0.06 0.18 0.14 0.09	0.02 0.02 0.09 0.07 0.04

3 rd Power


page 8

to	1	2	3	4	5	6	7
r 0 m 3 4 5 6	0.139 0.122	0.108 0.183 0.155 0.123	0.159 0.159 0.159 0.218 0.197 0.172 0.179	0.245 0.245 0.217 0.228 0.24	0.144 0.167 0.193	0.126 0.126 0.072 0.092 0.115	0.06 0.06 0.027 0.039 0.053


©Dennis Bricker, U. of Iowa, 1997


4th Power

```
to
f
                           2
                                        3
                                                                 5
                                                                                          7
              1
                                                    4
                                                                              6
r
                                  0.1907 0.2305
0.1907 0.2305
0.1907 0.2305
0.1649 0.2422
                                                           0.1729 0.0974 0.0424
0.1729 0.0974 0.0424
0.1729 0.0974 0.0424
   1234567
         0.1185
                     0.1476
m
                     0.1476
         0.1185
         0.1185
0.1012
                     0.1476
                      0.1155
                                                                        0.1206
                                                            0.1989
                                                                                     0.0567
                                               0.2377
         0.1079
                     0.1277
                                  0.1746
                                                            0.189
                                                                        0.1118
                                                                                     0.0513
         0.1153 0.1414 0.1856 0.2327 0.1779 0.1019 0.0452 0.1185 0.1476 0.1907 0.2305 0.1729 0.0974 0.0424
```


©Dennis Bricker, U. of Iowa, 1997

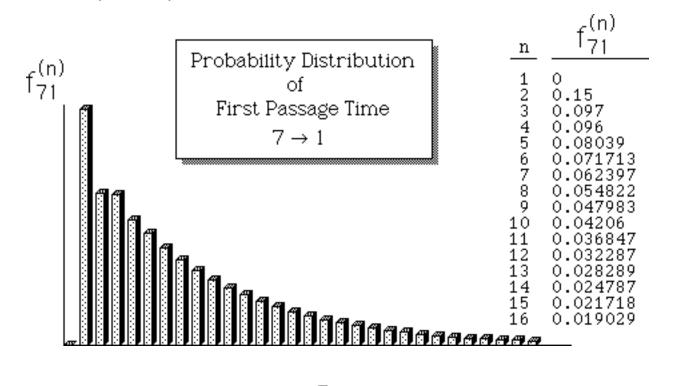
©Dennis Bricker, U. of Iowa, 1997

Steady State Distribution π

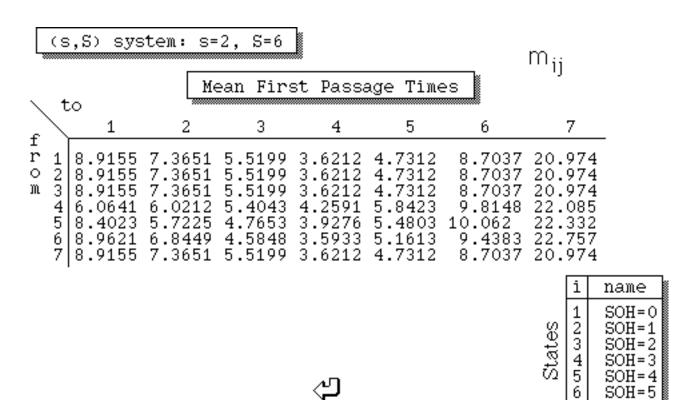
i	name	P{i}
1234567	SOH=0 SOH=1 SOH=2 SOH=3 SOH=4 SOH=5 SOH=6	0.11216 0.13578 0.18116 0.23479 0.18247 0.10595 0.047678

Average Stock-on-Hand
$$\sum_{i=1}^{7} (i-1) \pi_i$$

i	State	Pi	С	Pi×C
1	SOH=0	0.11216	0	0
2	SOH=1	0.13578	1	0.13578
3	SOH=2	0.18116	2	0.36233
4	SOH=3	0.23479	3	0.70438
5	SOH=4	0.18247	4	0.72989
6	SOH=5	0.10595	5	0.52976
7	SOH=6	0.04767	6	0.28607


The average cost/period in steady state is 2.7482

(Here, "cost" = SOH)


3.2407

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997

SOH=4 SOH=5 SOH=6