

Example One

Example Two

Example Three

Example Four

$$\text{Max } Z = 2x_1 - x_2 + x_3$$

subject to

$$\begin{cases} 3x_1 + x_2 + x_3 \leq 60 \\ x_1 - x_2 + 2x_3 \leq 10 \\ x_1 + x_2 - x_3 \leq 20 \\ x_1, x_2, x_3 \geq 0 \end{cases}$$

$$\text{Max } Z = 2x_1 - x_2 + x_3$$

subject to

$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 = 60 \\ x_1 - x_2 + 2x_3 + x_5 = 10 \\ x_1 + x_2 - x_3 + x_6 = 20 \\ x_1, x_2, x_3, x_4, x_5, x_6 \geq 0 \end{cases}$$

Add slack variables
to convert the
inequalities to
equations

	-z	x_1	x_2	x_3	x_4	x_5	x_6	
	1	2	3	4	5	6	7	B
MAX	1	2	-1	1	0	0	0	0
	0	3	1	1	1	0	0	60
	0	1	-1	2	0	1	0	10
	0	1	1	-1	0	0	1	20

	1	2	3	4	5	6	7	B
MAX	1	2	-1	1	0	0	0	0
	0	3	1	1	1	0	0	60
	0	1	-1	2	0	1	0	10
	0	1	1	-1	0	0	1	20
	*				***			

	1	2	3	4	5	6	7	B
MAX	1	0	1	-3	0	-2	0	-20
	0	0	4	-5	1	-3	0	30
	0	1	-1	2	0	1	0	10
	0	0	2	-3	0	-1	1	10
	**		*		*			

	1	2	3	4	5	6	7	B
MAX	1	0	1	-3	0	-2	0	-20
	0	0	4	-5	1	-3	0	30
	0	1	-1	2	0	1	0	10
	0	0	2	-3	0	-1	1	10
	**		*		*			

	1	2	3	4	5	6	7	B
MAX	1	0	0	-1.5	0	-1.5	-0.5	-25
	0	0	0	1	1	-1	-2	10
	0	1	0	0.5	0	0.5	0.5	15
	0	0	1	-1.5	0	-0.5	0.5	5
	***		*					

	-Z	X_1	X_2	X_3	X_4	X_5	X_6	
	1	2	3	4	5	6	7	B
MAX	1	0	0	-1.5	0	-1.5	-0.5	-25
	0	0	0	1	1	-1	-2	10
	0	1	0	0.5	0	0.5	0.5	15
	0	0	1	-1.5	0	-0.5	0.5	5

*** *

*optimal
tableau!*

$$-Z = -25 \Rightarrow Z = 25$$

$$\begin{cases} Z = 25 \\ X_1 = 15 \\ X_2 = 5 \\ X_4 = 10 \end{cases} \quad \begin{matrix} \text{basic} \\ \text{nonbasic} \end{matrix}$$

$$\begin{cases} X_3 = 0 \\ X_5 = 0 \\ X_6 = 0 \end{cases}$$

Maximize $Z = x_1 + 2x_2 + 3x_3 - x_4$
subject to

$$\begin{aligned} x_1 + 2x_2 + 3x_3 &= 15 \\ 2x_1 + x_2 - 5x_3 &= 20 \\ x_1 + 2x_2 - x_3 + x_4 &= 10 \end{aligned}$$

$$x_1, x_2, x_3, x_4 \geq 0$$

	-Z	X_1	X_2	X_3	X_4	
	1	2	3	4	5	B
MAX	1	1	2	3	-1	0
	0	1	2	3	0	15
	0	2	1	-5	0	20
	0	1	2	-1	1	10

* *

$-Z$ and X_4
can serve as the
basic variables
in the top and
bottom rows,
respectively.

Minimize $w = x_5 + x_6$

$$-z + x_1 + 2x_2 + 3x_3 - x_4 = 0$$

subject to

$$x_1 + 2x_2 + 3x_3 + x_5 = 15$$

$$2x_1 + x_2 - 5x_3 + x_6 = 20$$

$$x_1 + 2x_2 - x_3 + x_4 = 10$$

$$x_1, x_2, x_3, x_4 \geq 0, x_5 \geq 0, x_6 \geq 0$$

Artificial variables X_5 & X_6 are added to the first two constraints to serve as initial basic variables.

MIN	1	2	3	4	5	6	7	8	B
	1	0	0	0	0	0	1	1	0
	0	1	1	2	3	-1	0	0	0
	0	0	1	2	3	0	1	0	15
	0	0	2	1	-5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

**

MIN	1	2	3	4	5	6	7	8	B
	1	0	-3	-3	2	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	2	1	-5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

**

First, pivot so as to eliminate X_5 & X_6 from the top row and X_4 from the second row.

We now have a basic "pseudo-feasible" solution with which to begin the Simplex method.

MIN	1	2	3	4	5	6	7	8	B
	1	0	-3	-3	2	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	2	1	-5	0	0	1	20
	0	0	1	2	-1	1	0	0	10
	**				***				

We are minimizing the Phase-One objective, and select a pivot column having a negative reduced cost in the objective row.

Two columns have a negative reduced cost.
Pivoting in either column should reduce the value of the objective.

MIN	1	2	3	4	5	6	7	8	B
	1	0	-3	-3	2	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	②	1	-5	0	0	1	20
	0	0	1	2	-1	1	0	0	10
	**				***				

Arbitrarily choose X_1 rather than X_2 .

Minimum ratio test:

$$\min \left\{ \frac{15}{1}, \frac{20}{2}, \frac{10}{1} \right\} \text{ tie!}$$

	1	2	3	4	5	6	7	8	B
	1	0	0	-1.5	-5.5	0	0	1.5	-5
	0	1	0	3	7	0	0	-1	-10
	0	0	0	1.5	5.5	0	1	-0.5	5
	0	0	1	0.5	-2.5	0	0	0.5	10
	0	0	0	1.5	1.5	1	0	-0.5	0
	***				**				

Arbitrarily we select row 4 for the pivot.
This introduced a zero on the right-hand-side
(degeneracy!)

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	-1.5	-5.5	0	0	1.5	-5
	0	1	0	3	7	0	0	-1	-10
	0	0	0	1.5	5.5	0	1	-0.5	5
	0	0	1	0.5	-2.5	0	0	0.5	10
	0	0	0	1.5	1.5	1	0	-0.5	0

**

Either columns 4 or 5 (X_4 or X_5) could be selected as pivot column... let's choose column 5.

Minimum Ratio Test:

$$\min \left\{ \frac{5}{5.5}, \frac{-10}{1.5}, \frac{0}{0} \right\}$$

The minimum ratio is zero!

	1	2	3	4	5	6	7	8	B
	1	0	0	4	0	3.6667	0	-0.3333	-5
	0	1	0	-4	0	-4.6667	0	1.3333	-10
	0	0	0	-4	0	-3.6667	1	1.3333	5
	0	0	1	3	0	1.6667	0	-0.3333	10
	0	0	0	1	1	0.66667	0	-0.3333	0

*

*

Choose column #8 for the next pivot.

There is only one candidate row for the pivot.

	1	2	3	4	5	6	7	8	B
	1	0	0	3	0	2.75	0.25	0	-3.75
	0	1	0	0	0	-1	-1	0	-15
	0	0	0	-3	0	-2.75	0.75	1	3.75
	0	0	1	2	0	0.75	0.25	0	11.25
	0	0	0	0	1	-0.25	0.25	0	1.25

*

The resulting tableau is optimal (for Phase One), since no column has a negative reduced cost.

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	3	0	2.75	0.25	0	-3.75
	0	1	0	0	0	-1	-1	0	-15
	0	0	0	-3	0	-2.75	0.75	1	3.75
	0	0	1	2	0	0.75	0.25	0	11.25
	0	0	0	0	1	-0.25	0.25	0	1.25

*** * *

In this tableau, one of the artificial variables remains basic (and positive).

This indicates that the original LP had no feasible solution, since a feasible solution (with artificial variables zero) would be optimal for Phase One, if such a solution exists!

Maximize $z = x_1 + 2x_2 + 3x_3 - x_4$
subject to

$$\begin{aligned} x_1 + 2x_2 + 3x_3 &= 15 \\ 2x_1 + x_2 + 5x_3 &= 20 \\ x_1 + 2x_2 - x_3 + x_4 &= 10 \\ x_1, x_2, x_3, x_4 &\geq 0 \end{aligned}$$

$-z$ & x_4 can serve as basic variables in the first and last rows.

	1	2	3	4	5	B
MAX	1	1	2	3	-1	0
	0	1	2	3	0	15
	0	2	1	5	0	20
	0	1	2	-1	1	10

*** *

The second and third rows will require artificial variables to serve as basic variables.

Minimize $w = x_5 + x_6$

$$-z + x_1 + 2x_2 + 3x_3 - x_4 = 0$$

subject to

$$x_1 + 2x_2 + 3x_3 + x_5 = 15$$

$$2x_1 + x_2 + 5x_3 + x_6 = 20$$

$$x_1 + 2x_2 - x_3 + x_4 = 10$$

$$x_1, x_2, x_3, x_4 \geq 0, x_5 \geq 0, x_6 \geq 0$$

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	0	0	1	1	0
	0	1	1	2	3	-1	0	0	0
	0	0	1	2	3	0	1	0	15
	0	0	2	1	5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

x_5 & x_6 are artificial variables, and the Phase-One objective is to minimize their sum.

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	0	0	1	1	0
	0	1	1	2	3	-1	0	0	0
	0	0	1	2	3	0	1	0	15
	0	0	2	1	5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

* * *

We must pivot to enter x_4 , x_5 , and x_6 into the basis (eliminating these variables from the two objective rows).

	1	2	3	4	5	6	7	8	B
MIN	1	0	-3	-3	-8	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	2	1	5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

* * *

	1	2	3	4	5	6	7	8	B
MIN	1	0	-3	-3	-8	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	2	1	5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

*** *

Any one of columns 3, 4, and 5 could be selected as the pivot column.

Here, column 3 (X_1) is chosen.

Minimum ratio test:

$$\min \left\{ \frac{15}{1}, \frac{20}{2}, \frac{10}{1} \right\} \text{ tie!}$$

Arbitrarily break the tie

Row 4

Row 5

	1	2	3	4	5	6	7	8	B
MIN	1	0	-3	-3	-8	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	2	1	5	0	0	1	20
	0	0	1	2	-1	1	0	0	10

*** *

Any one of columns 3, 4, and 5 could be selected as the pivot column.

Here, column 3 (X_1) is chosen.

Minimum ratio test:

	1	2	3	4	5	6	7	8	B
	1	0	0	-1.5	-0.5	0	0	-1.5	-5
	0	1	0	3	-3	0	0	-1	-10
	0	0	0	1.5	0.5	0	1	-0.5	5
	0	0	1	0.5	2.5	0	0	0.5	10
	0	0	0	1.5	-3.5	1	0	-0.5	0

* *

Any one of columns 3, 4, and 5 could be selected as the pivot column.

Here, column 3 (X_1) is chosen.

Minimum ratio test:

$$\min \left\{ \frac{15}{1}, \frac{20}{2}, \frac{10}{1} \right\} \text{ tie!}$$

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	-1.5	-0.5	0	0	-1.5	-5
	0	1	0	3	-3	0	0	-1	-10
	0	0	0	1.5	0.5	0	1	-0.5	5
	0	0	1	0.5	2.5	0	0	0.5	10
	0	0	0	(1.5)	-3.5	1	0	-0.5	0

* *

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	-4	1	0	1	-5
	0	1	0	0	4	-2	0	0	-10
	0	0	0	0	4	-1	1	0	5
	0	0	1	0	3.667	-0.3333	0	0.6667	10
	0	0	0	1	-2.333	0.6667	0	-0.3333	0

*** *

*

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	-4	1	0	1	-5
	0	1	0	0	4	-2	0	0	-10
	0	0	0	0	(4)	-1	1	0	5
	0	0	1	0	3.667	-0.3333	0	0.6667	10
	0	0	0	1	-2.333	0.6667	0	-0.3333	0

*** *

*

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	0	0	-1	1	0
	0	1	0	0	0	-1	-1	0	-15
	0	0	0	0	1	-0.25	0.25	0	1.25
	0	0	1	0	0	0.5833	-0.9167	0.6667	5.417
	0	0	0	1	0	0.08333	0.5833	-0.3333	2.917

*** *** *

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	0	0	-1	1	0
	0	1	0	0	0	-1	-1	0	-15
	0	0	0	0	1	-0.25	0.25	0	1.25
	0	0	1	0	0	0.5833	-0.9167	0.6667	5.417
	0	0	0	1	0	0.08333	0.5833	-0.3333	2.917

This tableau is optimal for the Phase-One objective, and provides us with a basic feasible solution with which to begin Phase Two.

	2	3	4	5	6		7	8	B
	0	0	0	0	0	-1	1	0	0
	0	1	0	0	0	-1	-1	0	-15
	0	0	0	1	-0.25	0.5	0	0	1.25
	0	0	1	0	0	0.5833	-0.9167	0.6667	5.417
	0	0	0	1	0	0.08333	0.5833	-0.3333	2.917

We can now delete the artificial variables (and w) and can delete the Phase-One objective row.

MAX	1	0	0	0	-1	-15
	0	0	0	1	-0.25	1.25
	0	1	0	0	0.5833	5.417
	0	0	1	0	0.08333	2.917

Since the Phase Two objective is to be minimized, this tableau is optimal!

	$-z$	X_1	X_2	X_3	X_4	
MAX	1	0	0	0	-1	-15
	0	0	0	1	-0.25	1.25
	0	1	0	0	0.5833	5.417
	0	0	1	0	0.08333	2.917
	*	*	*	*	*	

$$-z = -15, \text{ i.e., } z = 15$$

$$X_3 = 1.25$$

Optimal solution

$$X_1 = 5.417$$

$$X_2 = 2.917$$

$$X_4 = 0$$

	1	2	3	4	5	6	7	8	B
MIN	1	0	-3	-3	-8	0	0	0	-35
	0	1	2	4	2	0	0	0	10
	0	0	1	2	3	0	1	0	15
	0	0	2	1	5	0	0	1	20
	0	0	(1)	2	-1	1	0	0	10
	*	*	*	*	*	*	*	*	

Here, the pivot is in the bottom row.

The pivot produces a zero on the right-hand-side (*degeneracy*)

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	3	-11	3	0	0	-5
	0	1	0	0	4	-2	0	0	-10
	0	0	0	0	4	-1	1	0	5
	0	0	0	-3	7	-2	0	1	0
	0	0	1	2	-1	1	0	0	10
	*	*	*	*	*	*	*	*	

MIN	1	2	3	4	5	6	7	8	B
1	0	0	3	-11	3	0	0		-5
0	1	0	0	4	-2	0	0		-10
0	0	0	0	4	-1	1	0		5
0	0	0	-3	7	-2	0	1		0
0	0	1	2	-1	1	0	0		10

Column 5 is selected for the pivot.

Minimum Ratio Test:

$$\min \left\{ \frac{5}{4}, \frac{0}{7}, \dots \right\} = 0$$

MIN	1	2	3	4	5	6	7	8	B
1	0	0	-1.714	0	-0.1429	0	1.571		-5
0	1	0	1.714	0	-0.8571	0	-0.5714		-10
0	0	0	1.714	0	0.1429	1	-0.5714		5
0	0	0	-0.4286	1	-0.2857	0	0.1429		0
0	0	1	1.571	0	0.7143	0	0.1429		10

*

*

Pivot in row 4

No improvement in the objective!

MIN	1	2	3	4	5	6	7	8	B
1	0	0	-1.714	0	-0.1429	0	1.571		-5
0	1	0	1.714	0	-0.8571	0	-0.5714		-10
0	0	0	1.714	0	0.1429	1	-0.5714		5
0	0	0	-0.4286	1	-0.2857	0	0.1429		0
0	0	1	1.571	0	0.7143	0	0.1429		10

*

*

$$\min \left\{ \frac{5}{1.714}, \dots, \frac{10}{1.571} \right\}$$

MIN	1	2	3	4	5	6	7	8	B
1	0	0	0	0	0		1	1	0
0	1	0	0	0	-1		-1	0	-15
0	0	0	1	0	0.08333		0.5833	-0.3333	2.917
0	0	0	0	1	-0.25		0.25	0	1.25
0	0	1	0	0	0.5833		-0.9167	0.6667	5.417

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	0	0	0	1	1	0
	0	1	0	0	0	-1	-1	0	-15
	0	0	0	1	0	0.08333	0.5833	-0.3333	2.917
	0	0	0	0	1	-0.25	0.25	0	1.25
	0	0	1	0	0	0.5833	-0.9167	0.6667	5.417

This tableau is optimal for Phase One.

	2	3	4	5	6		8	B
	0	0	0	0	0	-1	1	0
	0	1	0	0	0	-1	0	-15
	0	0	0	1	-0.25	0.5	0	1.25
	0	0	1	0	0.08333	-0.167	0.6667	5.417
	0	0	0	0	0.5833	0.833	-0.3333	2.917

We can now delete the artificial variables (and w) and can delete the Phase-One objective row.

MAX	1	0	0	0	-1	-15
	0	0	0	1	-0.25	1.25
	0	1	0	0	0.5833	5.417
	0	0	1	0	0.08333	2.917

Since the Phase Two objective is to be minimized, this tableau is optimal!

Minimize $z = 34x_1 + 5x_2 + 19x_3 + 9x_4$
 subject to $2x_1 + x_2 + x_3 + x_4 \geq 9$
 $4x_1 - 2x_2 + 5x_3 + x_4 \leq 8$
 $4x_1 - x_2 + 3x_3 + x_4 \geq 5$
 $x_1, x_2, x_3, x_4 \geq 0$

Convert the inequalities to equations by adding slack & subtracting surplus variables

Minimize $z = 34x_1 + 5x_2 + 19x_3 + 9x_4$
 subject to $2x_1 + x_2 + x_3 + x_4 - x_5 = 9$
 $4x_1 - 2x_2 + 5x_3 + x_4 + x_6 = 8$
 $4x_1 - x_2 + 3x_3 + x_4 - x_7 = 5$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \geq 0$

Minimize $z = 34x_1 + 5x_2 + 19x_3 + 9x_4$
 subject to $2x_1 + x_2 + x_3 + x_4 - x_5 = 9$
 $4x_1 - 2x_2 + 5x_3 + x_4 + x_6 = 8$
 $4x_1 - x_2 + 3x_3 + x_4 - x_7 = 5$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \geq 0$

The first and last constraint require artificial variables:

Minimize $w = x_8 + x_9$
 $-z + 34x_1 + 5x_2 + 19x_3 + 9x_4 = 0$
 subject to $2x_1 + x_2 + x_3 + x_4 - x_5 + x_8 = 9$
 $4x_1 - 2x_2 + 5x_3 + x_4 + x_6 = 8$
 $4x_1 - x_2 + 3x_3 + x_4 - x_7 + x_9 = 5$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 \geq 0$

Minimize $w = x_8 + x_9$

$$-z + 34x_1 + 5x_2 + 19x_3 + 9x_4 = 0$$

$$\text{subject to } 2x_1 + x_2 + x_3 + x_4 - x_5 + x_6 + x_7 + x_8 = 9$$

$$4x_1 - 2x_2 + 5x_3 + x_4 + x_5 = 8$$

$$4x_1 - x_2 + 3x_3 + x_4 - x_7 + x_9 = 5$$

$$x_1 - x_2 - x_3 - x_4 - x_5 - x_6 - x_7 - x_8 - x_9 \geq 0$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9 = 0$$

	1	2	3	4	5	6	7	8	9	0	1	1	B
MIN	1	0	0	0	0	0	0	0	0	1	1	0	0
	0	1	34	5	19	9	0	0	0	0	0	0	0
	0	0	2	1	1	1	-1	0	0	1	0	0	9
	0	0	4	-2	5	1	0	1	0	0	0	0	8
	0	0	4	-1	3	1	0	0	-1	0	1	0	5

	1	2	3	4	5	6	7	8	9	0	1	1	B
MIN	1	0	0	0	0	0	0	0	0	1	1	0	0
	0	1	34	5	19	9	0	0	0	0	0	0	0
	0	0	2	1	1	1	-1	0	0	①	0	9	
	0	0	4	-2	5	1	0	1	0	0	0	8	
	0	0	4	-1	3	1	0	0	-1	0	①	5	
	*	*		II			*		*	*	*		

	1	2	3	4	5	6	7	8	9	$\frac{1}{0}$	$\frac{1}{1}$	B
MIN	1	0	-6	0	-4	-2	1	0	1	0	0	-14
	0	1	34	5	19	9	0	0	0	0	0	0
	0	0	2	1	1	1	-1	0	0	1	0	9
	0	0	4	-2	5	1	0	1	0	0	0	8
	0	0	4	-1	3	1	0	0	-1	0	1	5
	*	*					*		*	*	*	

	1	2	3	4	5	6	7	8	9	$\frac{1}{0}$	$\frac{1}{1}$	B
MIN	1	0	-6	0	-4	-2	1	0	1	0	0	-14
	0	1	34	5	19	9	0	0	0	0	0	0
	0	0	2	-1	1	1	-1	0	0	1	0	9
	0	0	4	-2	5	1	0	1	0	0	0	8
	0	0	(4)	-1	3	1	0	0	-1	0	1	5

* * *

* * *

	1	2	3	4	5	6	7	8	9	$\frac{1}{0}$	$\frac{1}{1}$	B
MIN	1	0	0	-1.5	0.5	-0.5	1	0	-0.5	0	1.5	-6.5
	0	1	0	13.5	-6.5	0.5	0	0	8.5	0	-8.5	-42.5
	0	0	0	1.5	-0.5	0.5	-1	0	0.5	1	-0.5	6.5
	0	0	0	-1	2	0	0	1	1	0	-1	3
	0	0	1	-0.25	0.75	0.25	0	0	-0.25	0	0.25	1.25

* * *

* * *

	1	2	3	4	5	6	7	8	9	$\frac{1}{0}$	$\frac{1}{1}$	B
MIN	1	0	0	-1.5	0.5	-0.5	1	0	-0.5	0	1.5	-6.5
	0	1	0	13.5	-6.5	0.5	0	0	8.5	0	-8.5	-42.5
	0	0	0	(1.5)	-0.5	0.5	-1	0	0.5	1	-0.5	6.5
	0	0	0	-1	2	0	0	1	1	0	-1	3
	0	0	1	-0.25	0.75	0.25	0	0	-0.25	0	0.25	1.25

* * *

* * *

	1	2	3	4	5	6	7	8	9	$\frac{1}{0}$	$\frac{1}{1}$	B
	1	0	0	0	0	0	0	0	0	-1	-1	0
	0	1	0	0	-2	-4	9	0	4	-9	-4	-101
	0	0	0	1	-0.333	0.333	-0.666	0	0.333	0.6667	-0.333	4.333
	0	0	0	0	1.667	0.333	-0.666	1	1.333	0.6667	-1.333	7.333
	0	0	1	0	0.666	0.333	-0.166	0	-0.166	0.1667	0.166	2.333

* * * *

* *

1	2	3	4	5	6	7	8	9	1	1	B
1	0	0	0	0	0	0	0	0	-1	-1	0
0	1	0	0	-2	-4	9	0	4	-9	-4	-101
0	0	0	1	-0.333	0.333	-0.666	0	0.333	0.6667	-0.333	4.333
0	0	0	0	1.667	0.333	-0.666	1	1.333	0.6667	-1.333	7.333
0	0	1	0	0.666	0.333	-0.166	0	-0.166	0.1667	0.166	2.333

***** *

This tableau is optimal for Phase One.

We may now delete the artificial variables and the Phase One objective row to obtain a basic feasible solution with which to begin Phase Two.

2	3	4	5	6	7	8	9	1	1	B	
0	0	0	0	0	0	0	0	-1	-1	0	
0	1	0	0	-2	-4	9	0	4	-9	-4	-101
0	0	0	1	-0.333	0.333	-0.666	0	0.333	0.6667	-0.333	4.333
0	0	0	0	1.667	0.333	-0.666	1	1.333	0.6667	-1.333	7.333
0	0	1	0	0.666	0.333	-0.166	0	-0.166	0.1667	0.166	2.333

***** *

1	2	3	4	5	6	7	8	B	
MIN	1	0	0	-2	-4	9	0	4	-101
	0	0	1	-0.333	0.333	-0.666	0	0.333	4.333
	0	0	0	1.667	0.333	-0.666	1	1.333	7.333
	0	1	0	0.666	0.333	-0.166	0	-0.166	2.333

*** *

	1	2	3	4	5	6	7	8	B
MIN	1	0	0	-2	-4	9	0	4	-101
	0	0	1	-0.333	0.333	-0.666	0	0.333	4.333
	0	0	0	1.667	0.333	-0.666	1	1.333	7.333
	0	1	0	0.666	0.333	-0.166	0	-0.166	2.333

*

Tableau is now
optimal for Phase
Two!

	1	2	3	4	5	6	7	8	B
MIN	1	12	0	6	0	7	0	2	-73
	0	-1	1	-1	0	-0.5	0	0.5	2
	0	-1	0	1	0	-0.5	1	1.5	5
	0	3	0	2	1	-0.5	0	-0.5	7

* * *

*

$$-Z = -73, \text{ i.e., } Z = 73$$

$$X_2 = 2$$

$$X_6 = 5$$

$$X_4 = 7$$