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Discrete Consider a systern with a finite set
Time of states: {s,.5,, .. 54!

Mﬂ rkov The svstem is observed at a certain
||: hain sequence of points in time, or stages.

The svstem may make a transition
from one state to another between
chservations, according Lo known
probability distributions.

Hp =state of systemn
at time n

fi-1.1

Transition Probabilities] P, = P{Xp=] | Xpq =i}

&

It the Markov chain is ségffonzr)y, Lhen the
transition probabilities are the same at every
stage, 1.e.,

n-ln

P]_] _Pij:P{KH:j | Xn—lzi}

Mot LhsE e slsis g0 sigse Led
dagF dapend OVEITF on Lo sigls
A B frnaraclimaaly precsdiing
stgga 8, sl VOT o sny agrliar
LHfElry of Be SVEIAL.
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transition probability
n-stage transition probability
steady—state probability
first-passage probability

first-passage Lime

mean first-passage time

&

Example: Summer Weather

—— & rexIET S LSe B 8 LT Cown e 5 g g ey fo e s
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Hot

stage= | davy
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/3
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sUppose that on Wednesday the weather is HOT.

What is the probability that on Saturday the weather is
either MODERATE or COOLY

H %l (I
Row 1 of the matrix P gives the u 1/ 1/ 1/
probability distribution of the 3 2 6
weather on Thursday: i | |
P-wu|'2 /3 '/
What is the distribution of the | i |
weather on Friday? C @ /3 /3;

Compute the probability that it is Cool on Friday by
conditioning on Thursday's weather:

PiCool on Fridaywy |Hot on Wednesday}
= P{Coocl Friday |Hot Thursday=<P{Hot Thursday | Hot Wed }

+ PiCool Fridavy | Moderate ThursP{Moderate Thurs | Hot, %Wed |

+ PiCool Friday |Cool Thursday =<P{Cool Thursdasy |I—Ic::t Wied |

= PyPy T PSP, T PR,
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. o &
P{Cool on Friday |Hot on Wednesdasy | T
I:1'13
= + + =
PPy * PPy * PR, [Py B Py (P
row for n
p33
- (1/2-;:( 1/5) * (1/23( 1/6) * (IAI 1/3) Sfarag e A e S ool T
of 2L

= 019444444

Fire probabiliny of colng frong sigls [ GFOF) bo slade 3 o)
£ TR sisoas fdays)

In general, the probability that the svstem makes a
transition from state i to state j in 2 stages is

1n,n+2

pij = Zpikpkj
K

which iz the element in row i & colurmn j of p?

(0.4167 0.3889 0.1944
P -|0.3889 0.4167 0.1944
0.3889 0.3889 0.2222
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[[Three—daﬁf Fﬂrecast]]

) H M c
Hl 0.39815 0.40278 0.19907
P =M 040278 0.39815 0.19907
¢l 0.39815 0.39515 0.2037

=o, if Wednesday is HOT, the probability that Saturday (three
davs hence) is Moderate is 040278,
and the probability that it is Cool is 0.1 9207

The utility company can be B0.185% certain, then, that
maturday will NOT be hot.

&)

|| The Chapman-Folmogorov Equation I\

Let Py = Pisystem is in state j at stage n,
given that system is in state j
initially)
Then
D@= 2. pFr} p(n.'ﬂ'  foranyi&j, and
! " ke Fk . rsuchthat O<rin

(n)
8 i Py & the fnar product of rowe *5 of 21

&

ard cofumr *7 of P
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Long-Run
Behavior

of
Markov Chains

A Markov chain is regular  if
there is some k such that its transition probability matriz P,
raised to the power k, has strictly positive elements only.

1;'( 1
30, |1
I 2

/2
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Not rfegular:

1
01 -
@ P=[1[]] é? if n is even

1 _J Lot
P o= 01

10] it nis odd

.,

) C 5 vi 1/2‘ Not regular:
0

C

[f a Markov chain is REGULAR, then

. (n) fircdeperdart of the
lim p; i T mutial state 1)
n—+co ) ’
That is, o | T T
lim P =% %0y
R oo A
RISTI-RERF 195

The limiting probability nj is called a
steadyv-state probabrirty
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Chapman- (n) 0 (o) | o
- foranv i&j, and
Eirant?gﬁzrw Py = Z Pix Py rauch that Oirin
(n) _ (n-1) ..
— P =2 Pik Py
k
' (n) _ {n 1)
—

lim p

11—

Therefore, the limiting probabilities must
satisfy the conditions:

2} ﬂj = Z “iPij «— inmatrix form, 7= MF
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H
3 2 Ve
N, isthe product of © and 1/2 1/3 %
colurnnn 1 of P:
1/ 1/ 1
Ty = Pl Pl Pais ¢ _%’) /3 /3)
=1/3n1+1/2n2+1/3n3

= %nl—l/znz—%rr,S:ﬂ

[ surnmer Weather Exarnple ]

mn=nF

|-U
I
=

o= P HPallotp e m, iz the product of T and

{ 1 1 column *2 of P
= /2E1+ /3:I'l:2+ /3'.11;3

== —1/2n1+2/3n2—1/3n3=[}

3= Pl TPl P33 . isthe productof # and

= :l/ﬁnl + 1/6“2 + 1/3 . column =3 of P

== —:l/ﬁnl—i/ﬁ:r:2+%n3=ﬂ
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2 1 1
n,— A m.— /A n.=0
/31 ! /2 2 /3 3 This systern of equations
iz linearly dependent

B 1/2“1 + 2/3“2 - 1/»/3753 =0 (the sum of the left sides

is zerol)
— 1/67:,1— 1/6::,2+2/3n3=[}

We nesd also the equation m, + R+ R,=1

2/3:11 - 1/2'.112 - 1/311:3 =0 LHScar g any ofie
Of Lhe st hree
1 2 1 SFURINIS SV VES LS
— S+ n, - AR =0
) /2 I /3 2 /3 3 7 SEEiEm T
Rallat ol
T, +m, +mn.=1
e
The solution: &, = 4 N, =27 =1
e solution: M, = g 2= /5 Ty= .5

"Long Range Forecast”

That is, "in the long run”, surnmetr davys will be HOT or MODERATE
with probability 40% each, and COOL with probability Z20%.
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Example

Consider an engine repair shop which specializes in the
repair of two types of automobile engines: gasoline & diesel

The overhaul of a diesel engine requires two davs, while
the overhaul of a gasoline engine requires a single day.

Each morning, the probability of receiving a diesel engine for
overhaulis pp= L4

The probability of lreceiving a gasoline engine for overhaul is
Pe= 5.

The profit. per dav for overhauling a diesel engine is $20, and

for a gasoline engine is §223.

&

Work which cannot be done on the day received is lost Lo
cornpetitor repair shops.

What is the best policy for accepting jobs? |

e [f only | davy's work is complete on a diesel engine, any
jobs which arrive must be refused.

e Ctherwise, if only one engine tvpe is received, that job
shiould be accepted.

e [f not in the midst of overhauling a diesel engine, and BOTH
engine types arrive, we can

a) give preference to the DIESEL engine
or

bl give preference to the GASOLINE engine
Fhich s the better chofce?

( Solution )
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Markov Chain Model

Let's assume that the system (repair shopl is observed
at midday each day,

what are the possible states of the system?

(1) repair shop is idle
(2] first day of work on diesel engine is in progress
(3) second day of work on diesel engine is in progress

(4] work on gasoline engine is in progress

&

Fronsition Diggrem |

(1) shopis idle

(21 day *1 on diesel

(3) day #2 on diesel

(4) work on gasaline engine

what transitions gre possibies
What 15 the probsbifily of each ransifion?
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(1) shopis idle

(21 day *1 on diesel

(31 day *2 on diesel

(4) work on gasoline engine

Some transitions occur with probabilities which
are the same, whether preference 15 given to
diesel or gasoline engines,

(1) shopis idle
s (2) day *1 on diegsel
(3) day #2 on diesel
| (<) work on gasoline engine

CanE

Probability of NO arrivals: (1-pgdii-pg) = (1- J)1-15) = 14

Probability that gasoling engine arrives, but no diesel:

(-pplpg = (1-151)5 =14
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1 1 'L
/3 /3 /3 Slegdy-Siale Disiriiuiion
( o 1 0 !
P=1y, | -~
550/ 025
1 1 1 2 025
550/ 5 025
4 025
Efxpectied profii-day:

bom,+ Yoomo+ Y20m,+ %030, = Y5 s

Altarnative A- Eive preferegnce la digsel engines |

(1) shopis idle
8 (23 day *1 on diesel

(3) day #2 on diesel
| (<) work on gasoline engine

F°

o
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Frobabilhity that diesel engine arrives, but no gasoline engine:;

F:'D“_F:'E:' = 1,%“-}3]: 1’%
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Afterpative 8- Give preference le gesaiine engines |

S5 fe O )

Slegdy-Siale Disiriiuiion

- 0 1 0 _
= 1 1]
1 1 1
1/3 ]A:' ’ ]/2 1 0282714
fhon| o r nEd
4 0428571

Efxpectied profii-day:
bom,+ $20m,+ $20m.+ ¥23m, = ¥iss571413

(2] Prefer | (b)) Prefer
Falicy diesel gasoline
engine engine
txpected 1575 | %15571413
prolil-day

The better policy 15 to accept the diesel engine when the
shop 15 ready for the next engine, and both types arrive.
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A Self-®Service Elevator inafour-story
building operates solely according to the buttons pushed inside
the elevator. That is, a person on the outside cannot "call” the
elevator to the floor he where he is. (Consequently, the only
way Lo get the elevatoris for someone else to get off at vour
floor.)

Of the passengers entering the building at the first floor and
wishing to use the elevator, half Qo to the second floor and
the other half divides equally between the third and fourth floors.

Fassengers above the first floor want to go to the first floor in
0% of the cases. Otherwise, they are equally likely Lo want to
go to the other two floors. <}J_—]

[Questinns]

® |f vou enter the building on the first floor,
what 15 the probability that vou will find the elevator there?

® [f the elevatoris not at the first floor but at the second
floor, how many trips 15 1t expected to make before
returning to the first floor?
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Markov Chain Model

State 1

location of the elevator (1=1,2,3,4] at end of trip

Stage n

trip number fransitrion Frobshifities

to
from™_ 1 2 3 4

1 0 03 025 025
2 08 0O 0.1 0.1
3 0.8 0 0 0.1
4 08 01 01 C

First Passage Time

Define the random wariable

Nij = the number of the stage at which the system,

Firsd reaches state ).

starting in state 1,
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First-Passage Probabilities |

= probability that the system, starting
instate 1, will first reach state j
in exactly n steps

= p{ij: nJ

Rearsl] that D fj”f' 7 the propabiline thet

SISCTTT I SISIE T, 108 SlSIE 15 0 51518 T

FITEr 11 (bt parians NOT for the First visitd)
Eb ( computation)

Computation of fiijn]

We express D].Ejﬂ:l by conditioning on the step, k, at which the

system first reaches state j;

system in | system first system first
reaches state }:x: P{ reaches state j }
] at step k at step k

n
(n) i state
S = E ] at
DU { step n
k=1
n

(n-k] (k]
=2 Py Xy

k=1
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Solve for f]-[jm:
n
(n=l (k]
} Z P

z D]n ] w ]c _|_ D{D]' f{n]'

(o) ind _ _ (n-k) (k]

=

Recursive Computaiion.

Compute the powers of P, 1.e., D;:].”:'

With f-':-”=|:]]-j compute

Then, knowing ﬂ'jj and F'IE:' , compute ﬂjsz', etc.
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3
1l 0 0.5 0.25 0.25 i 1
2| 0.8 0 0.1 0.1 f;} Déﬁ 0.5
3l 0.8 0.1 0 0.1
4l 0.8 0.1 0.1 O 1
2y _ 20 _ (2-k) ¢ (k)
D2 for =Py, k;DH fo
1 2 2 4 (2] (11 -01)
=D _D f
| 84, 0.2 3977 297 oo
3| 0.16 0.41 0.22 0,21 =016 -0.0x0.8
4| 0.16 0.41 0.21 0.23 -0 16
(13
fa 0.0
(23
f,, =0.16
p3 5
(2y _ (3 (3-k) ¢ (k)
1 2 3 4 for =Py, glﬂ“ fo

1| 0.16 ©0.415 0.2125 0.2125 (3 (21 1) (1) ~(2)

2| 0.7z 0.122 0.103 0.103 = - FrlL £

3| 00672 0.123 0.102 0.103 Poy = Py Tay 7Py Ty

4| 0,672 0.123 0.103 0.102

= ¥ 0672-0.8x0.8-0.0x0.16
- 0.032
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i =08

(2]

foy =0.16

F=0.032
pd

() (2) ~(2) (3D
= T = D{;il_pﬁjfzt:}_mi 1 _Dﬁ11}f2?
=0.2624-0-08x0.16-0.16x0.58
=0.0064

Fleyetor Fxempie |

First ¥isit Probabilities §
to State 1 :
from State 2

n P

1 0.8

2 b.16

a3 D.032

4 0.0064
R D.00128
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Fleystor Fxemple |

First Yisit Probabilities |
to State | i
from State 2

Mean First Passage Time

my; = expected number of stage at which the
system, starting in state 1, first reaches state j

where
Nij = the number of the stage at which the system,
starting in state 1, farsé reaches state .
_ ol
i Nij =ni= fij <::| E} (computation)
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HMoan First Passage Fime My = ElMyy = > Ilfg;n}
n=1
Computstion of m i

1) i)
n £, n £
1 0.8 0.8
2 0.16 032
3 0032 0.096
4 0.0064 0.0256 Fleyator Fxsmple |
5 0.00128 0.0064 '
5 0000256 D0O01536
7 00000512 00003584
8 00000020453 000008192

z |25

Mean First Passage Frme My = E{Nij} = Z ﬂf'.:?“:'

Analternative to computing this infinite sum:

BN = 2 E{N1J| Wy = kIxP{ ¥y = ki
k

= EINyj| #y =i} P(H; = }+HZ E{N1j| 1y = KIXP{ %y = K}
=]
" - Ao - . - - . —
1 Fij I+ BN Py

= 1xpy; +£j [1+ENHIp,,
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ENijh = 1xpy; +£j [1+EMNH Py,

E{N]]} = p” + kg]-p”‘: ‘I‘HZ;:] E{Nk]} p“{
i) 1 M ;

fFwea forym LRase eguisiions
For g Fved Fand i possibie
WSS SF e el F 5 sEenT
SF SRS SGUFEIONS 17

Ty po Tz g0 Mgy ST,

mi = | -I—kz;:j PiM

the expected number of
trips required to reach
floor #11f the elevator
15 currently on floor #227

To compute m,, from the above equation requires
that we also compute my,, Mz, and my,

1.8, My, k=2
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The above equation, with j fixed at the value 1
and1=1, 2, 3, & 4, vields:

.

My =1+ PyaMgi+ Pz May + PigMy,
My = 1+ PaaMoy+ PazMay + PoyMyy
Mz= 1+ PgaMay+ P3zMay + PgyMayy

Mg =T+ Dga Mgyt PuzMay + Puyy My,

-

= My =1+ Pya Moyt Pz May+ Pyg My,
§'j %Z%E %Z?E JMgy =T+ Pag Mo+ Doz Mgy + PogyMy;
0.1 0.1 0 Mz =1+ P3aMay+ PazgMagyt PayMay
) Mgy = 1% Pap Moyt Paz Mgyt Py My
= 1+0.5 My +0.25my, 40 25m,,  [m. = 2.25
My =1+ 0 mg+ 0. 1mg+ 0.1 man:} Jmay=1.25
Mz =1+ 0. 1my+ 0 mg+ U1 my, M= 1.25
My =1+ 0 dmg+ 0.1mg+ 0 my, My = 1.25

e
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Dy solving four sels of Tour egualions,
we ghigin alf the mean rirst passage Limes.

Mean First Passage Times %

Elevator

to

S oS
N Y=
e
LILIRIRD |
LT O A em
(REATAY N
oo | b

o
O O O LT
o in
o O O T
oo

The expected number of stages between visits
to a state *i ("mean recurrence time") is the
reciprocal of the steadv-state probability of
state #1:
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ainulation results:

The array EUN has now beeh globally defined in the workspace,

Each row of the array represents a repetition of the
simulation.

Note: Column 1 represents stage 0, 1.2, the 1nitial state.

Ka



