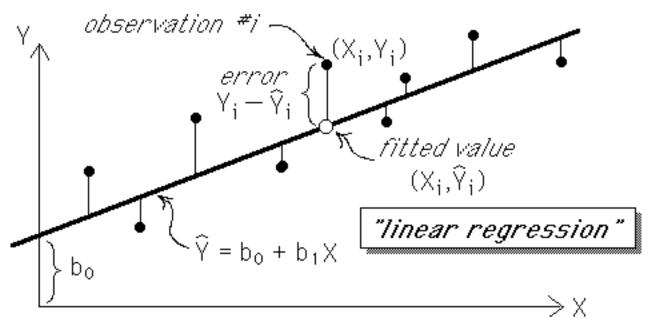


This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dbricker@icaen.uiowa.edu



Given a set of points, we wish to draw a line which approximately passes through them!

Curve Fitting 2/1/99 page 2

$$\varepsilon_i = Y_i - \widehat{Y}_i = Y_i - aX_i - b$$

Choose a&b to Minimize
$$\sum_{i} \varepsilon_{i}^{2} = \sum_{i} (Y_{i} - aX_{i} - b)^{2}$$

$$\frac{\partial}{\partial a} \sum_{i} \varepsilon_{i}^{2} = -2\sum_{i} X_{i} (Y_{i} - aX_{i} - b) = 0$$

$$\Rightarrow \begin{cases} \frac{\partial}{\partial a} \sum_{i} \varepsilon_{i}^{2} = -2\sum_{i} X_{i} (Y_{i} - aX_{i} - b) = 0 \\ \frac{\partial}{\partial b} \sum_{i} \varepsilon_{i}^{2} = -2\sum_{i} (Y_{i} - aX_{i} - b) = 0 \end{cases}$$

$$= 0$$

$$\text{linear eqns}$$

$$\text{in all } b$$

D.L.Bricker, U. of IA, 1999

$$\Rightarrow \begin{cases} \sum_{i} Y_{i} = nb + a\sum_{i} X_{i} \implies b = \frac{\sum_{i} Y_{i} - a\sum_{i} X_{i}}{n} \\ \sum_{i} X_{i} Y_{i} = b\sum_{i} X_{i} + a\sum_{i} X_{i}^{2} \end{cases}$$

$$\implies a = \frac{\sum_{i} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i} X_{i}^{2} - n \overline{X}^{2}}, \quad b = \overline{Y} - a \overline{X}$$

$$\frac{\textit{note:}}{\overline{X}} = \frac{1}{n} \sum_{i} X_{i} , \overline{Y} = \frac{1}{n} \sum_{i} Y_{i}$$

Suppose that an experiment is performed N times, each time varying certain "independent" variables and observing the value of a "dependent" variable:

observation	Dependent	INDEPENDENT YARIABLES				
*	variable Y	U	٧	W	Х	•••
1	Y ₁	U ₁	V_1	W_1	X_1	•••
2	Y ₂	U_2	V_2	W_2	X_2	•••
3	Y ₃	U ₃	V_3	W_3	Χ ₃	•••
4	Y ₄	U_4	V_4	W_4	X_4	•••
:	:	:	:	:	:	
Ν	Y_N	U _N	\bigvee_{N}	W_N	\times_{N}	•••

D.L.Bricker, U. of IA, 1999

Suppose that we suspect the relationship

$$Y = b_0 + b_1U + b_2V + b_3W + b_4X + ...$$

where b_0 , b_1 , b_2 , ... are unknown to us.

The "least square error" fit to the data is the set of coefficients b_0 , b_1 , b_2 , ... which

Minimizes
$$\sum_{i=1}^{N} (Y_i - b_0 - b_1 U_i - b_2 V_i - b_3 W_i - b_4 X_i - ...)^2$$

Note that b_0 , b_1 , b_2 , are the variables of this problem, while U_i , V_i , W_i , X_i , etc., are constants!

Curve Fitting 2/1/99 page 4

Minimize
$$\sum_{i=1}^{N} (Y_i - b_0 - b_1 U_i - b_2 V_i - b_3 W_i - b_4 X_i - ...)^2$$

This is an unconstrained nonlinear optimization problem with a *quadratic* objective function $\Phi(b_0,b_1,b_2,...)$

Therefore, its gradient, $abla\Phi$, is a *linear* function and the necessary condition for an optimum

$$\nabla\Phi(b_0,b_1,b_2,\dots)=0$$

is a *linear* system of equations.

@D.L.Bricker, U. of IA, 1999

system of linear equations

$$\begin{cases} \frac{\partial \Phi}{\partial b_0} = 0 \\ \frac{\partial \Phi}{\partial b_1} = 0 \end{cases}$$

Other possible objectives, for example

are more difficult to achieve, and are therefore seldom used.

To solve:

Min
$$\sum_{i=1}^{N} | Y_i - b_0 - b_1 U_i - b_2 V_i - \dots |$$

Define new variables z_i , i=1,2,... n

Linear Program #1

$$\label{eq:minimize} \begin{split} & \text{Minimize } \sum_{i=1}^n \boldsymbol{z}_i \\ & \text{subject to} \\ & \boldsymbol{z}_i \geq \boldsymbol{Y}_i - \boldsymbol{b}_0 - \boldsymbol{b}_1 \boldsymbol{U}_i - \boldsymbol{b}_2 \, \boldsymbol{V}_i - \dots \\ & \boldsymbol{z}_i \geq -\boldsymbol{Y}_i + \boldsymbol{b}_0 + \boldsymbol{b}_1 \, \boldsymbol{U}_i + \boldsymbol{b}_2 \, \boldsymbol{V}_i + \dots \end{split} \right\} i = 1, 2, \ \dots \ n$$

D.L.Bricker, U. of IA, 1999

To solve:

Min
$$\sum_{i=1}^{N} | Y_i - b_0 - b_1 U_i - b_2 V_i - \dots |$$

Define new variables $z_i^+ \& z_i^-$, i=1,2,... n

Linear Program #2

Minimize
$$\sum_{i=1}^{n} (z_i^+ + z_i^-)$$

subject to
$$z_i^+ - z_i^- = \mathbf{Y}_i - \mathbf{b}_0 - \mathbf{b}_1 \mathbf{U}_i - \mathbf{b}_2 \mathbf{V}_i - \dots \forall i$$

$$z_i^+ \ge 0, \qquad z_i^- \ge 0 \qquad \forall i$$

Fitting Nonlinear Curves

To fit a polynomial curve

$$Y = b_0 + b_1 X + b_2 X^2 + b_3 X^3 + ...$$

make a transformation of variables

$$U=X^2$$

 $V=X^3$
 $W=X^4$ etc.

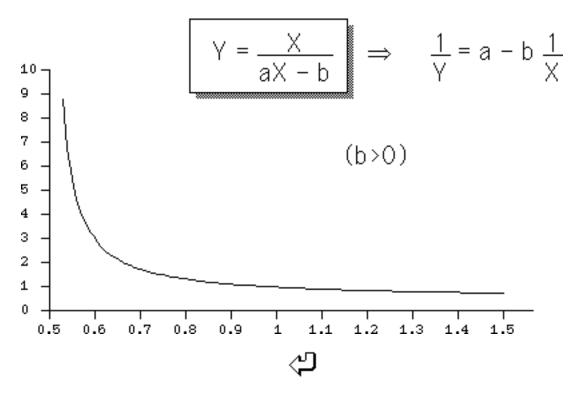
Then the problem becomes that of fitting a linear function: $Y = b_0 + b_1X + b_2U + b_3V + ...$

D.L.Bricker, U. of IA, 1999

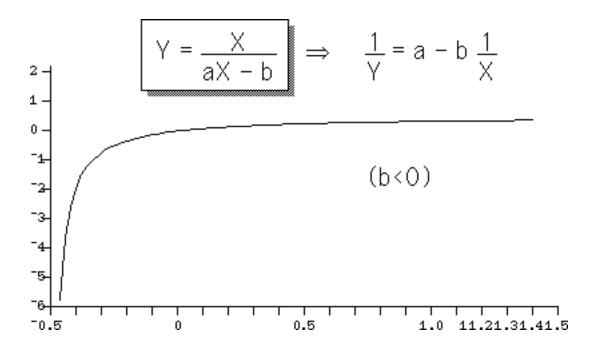
A wide variety of other curves are linearizable:

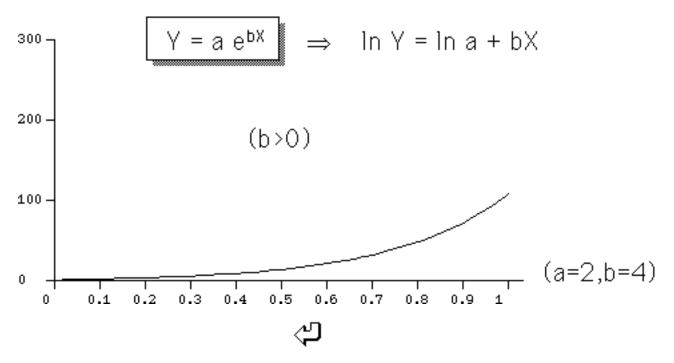
$$Y = \frac{X}{aX - b} \implies \frac{1}{Y} = a - b \frac{1}{X}$$

Y =
$$\frac{1}{a+be^{-X}}$$
 $\Rightarrow \frac{1}{Y} = a + be^{-X}$

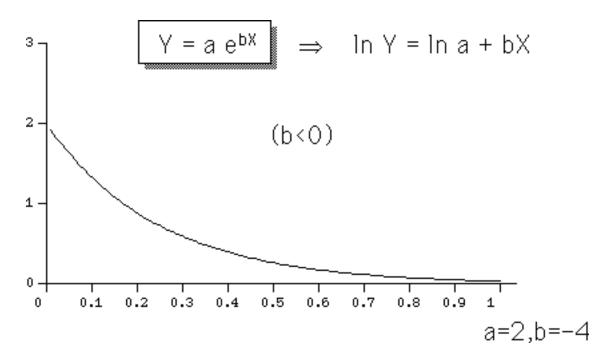


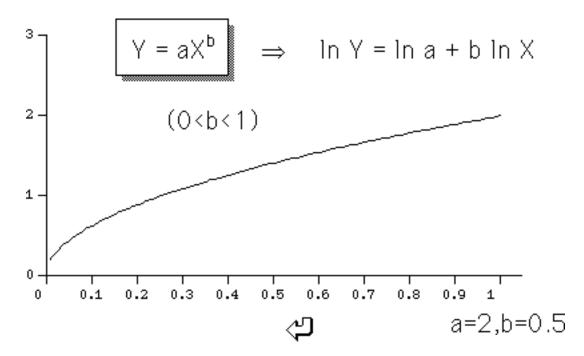
@D.L.Bricker, U. of IA, 1999



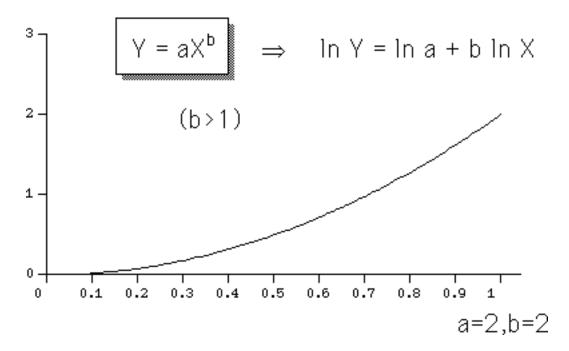


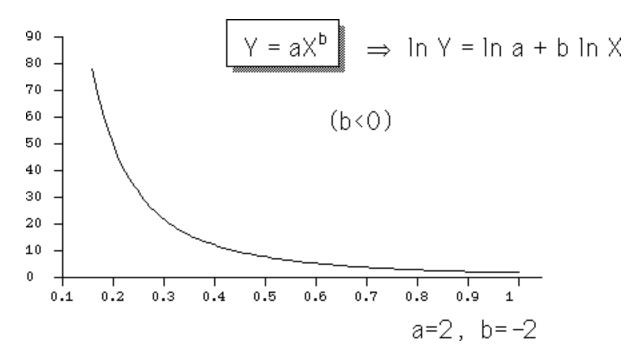
⊕D.L.Bricker, U. of IA, 1999



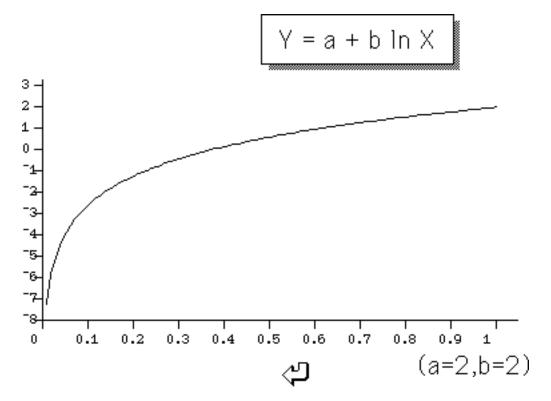


⊕D.L.Bricker, U. of IA, 1999

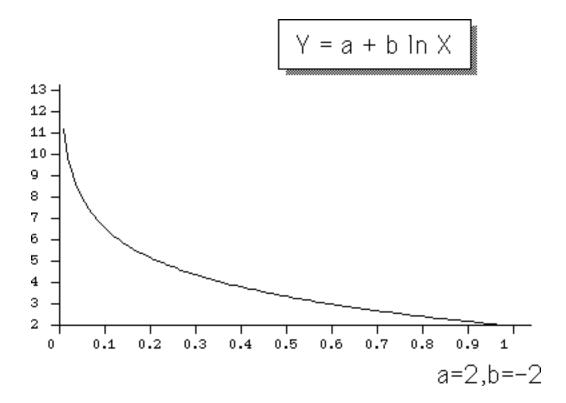




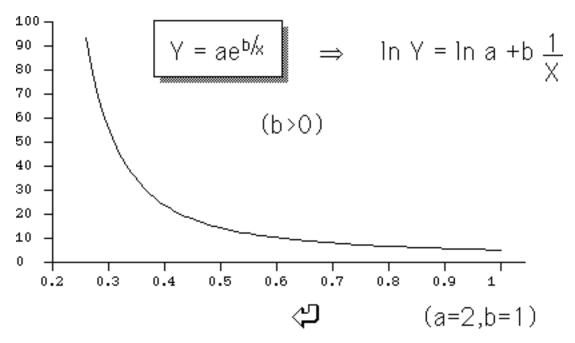
⊕D.L.Bricker, U. of IA, 1999



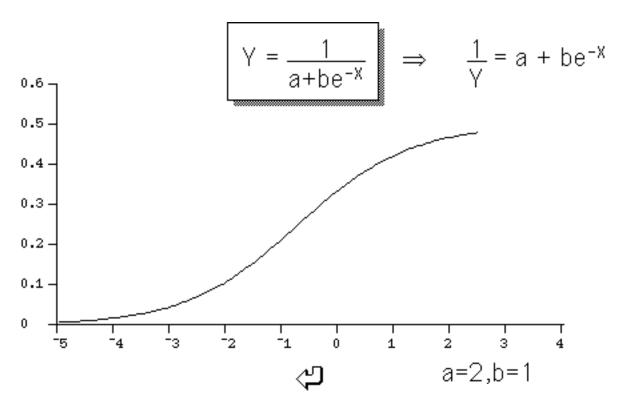
⊕D.L.Bricker, U. of IA, 1999



⊕D.L.Bricker, U. of IA, 1999



⊕D.L.Bricker, U. of IA, 1999



⊕D.L.Bricker, U. of IA, 1999

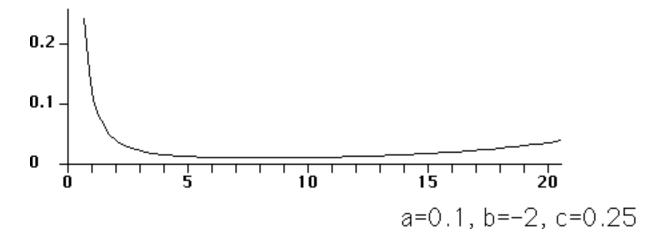
Hoerl's Function
$$\Rightarrow \ln Y = \ln a + b \ln X + cX$$

$$\Rightarrow a=1,b=2,c=-0.2$$

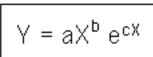
$$Y = aX^b e^{cX}$$

Hoerl's Function

$$\Rightarrow$$
 ln Y = ln a + b ln X + cX



D.L.Bricker, U. of IA, 1999



Hoerl's Function

$$\Rightarrow \ln Y = \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

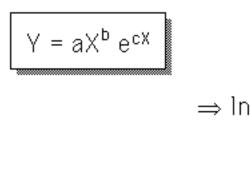
$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$

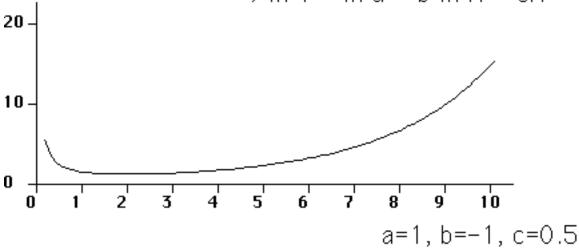
$$= \ln a + b \ln X + cX$$

$$= \ln a + b \ln X + cX$$



Hoerl's Function

 \Rightarrow ln Y = ln a + b ln X + cX



@D.L.Bricker, U. of IA, 1999

Warning!

Minimizing the sum of squares of the errors in the linearized form of the fitted curve does not , in general, minimize the sum of squares of the errors in the nonlinear fitted curve.

For example, suppose that we wish to fit a curve $Y = ab^X$ to our data.

The linearized form is $\ln Y = (\ln b)X + \ln a$

$$\begin{array}{c} \text{original} \\ \text{error} \end{array} \} \ \ \boldsymbol{\epsilon}_i = \boldsymbol{Y}_i - \widehat{\boldsymbol{Y}}_i = \boldsymbol{Y}_i - ab^{\boldsymbol{X}_i} \\ \text{error in} \\ \text{linearized} \\ \text{eqn} \end{array} \} \ \ \boldsymbol{\tilde{\epsilon}}_i = \ln \, \boldsymbol{Y}_i - \ln \, \widehat{\boldsymbol{Y}}_i = \ln \, \boldsymbol{Y}_i - (\ln \, b) \boldsymbol{X}_i - \ln \, a \\ \text{eqn} \end{array}$$

$$\begin{array}{c} \text{The 2} \\ \text{optimization} \\ \text{problems:} \end{array} \ \ \begin{array}{c} \text{Minimize} \, \sum_i \, \boldsymbol{\epsilon}_i^2 \\ \text{Minimize} \, \sum_i \, \boldsymbol{\tilde{\epsilon}}_i^2 \\ \text{will give different} \end{array}$$

results!

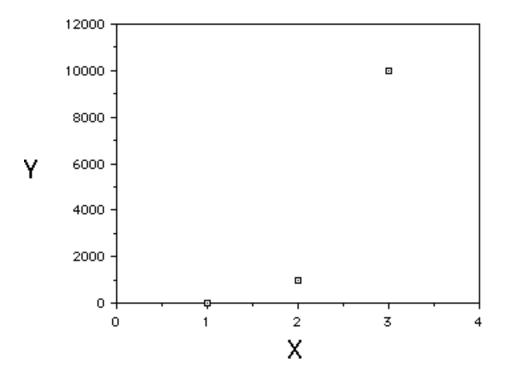
D.L.Bricker, U. of IA, 1999

Example:

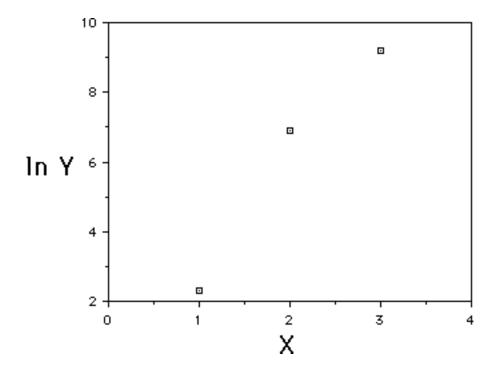
i	1	2	3
Xi	1	2	3
Yi	10	1000	10000

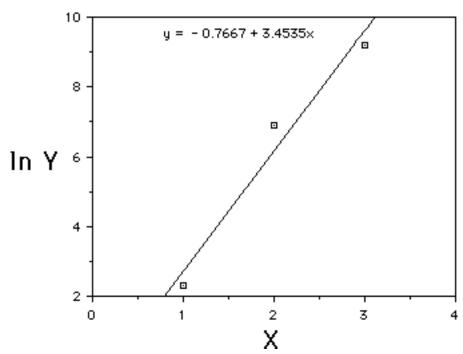
By inspection, we might guess that a fairly good fit is given by

$$\hat{Y} = 10 \times 10^{X}$$



⊕D.L.Bricker, U. of IA, 1999





least-square error fit of a line to the (transformed) data

Fitted line: $\ln Y = (\ln b)X + (\ln a)$

$$\ln Y = -0.7667 + 3.4535 X$$

In
$$a = -0.7667 \Rightarrow a = e^{-0.7667} = 0.46454$$

$$\ln b = 3.4535 \implies b = e^{3.4535} = 31.611$$

$$Y = 0.46454 \times 31.611^{X}$$

We have two "fits" of curves of the form $Y = ab^{X}$ to the data:

based on fit of ln Y = ln a + (ln b)X(the "least-square error" fit.)

$$\hat{Y} = 0.4645 \times 31.611^{x}$$

based upon inspection:

$$\hat{Y} = 10 \times 10^{X}$$

D.L.Bricker, U. of IA, 1999

based on fit of ln Y = ln a + (ln b)X

$$X_{i}$$
 Y_{i} Y_{i} \hat{Y}_{i} \hat{Y}_{i} \hat{Y}_{i} \hat{E}_{i}

1 10 14.685 4.685
2 1000 464.19 535.81
3 10000 14673.64 4673.64
$$\sum_{i} \tilde{E}_{i}^{2} = 22,130,012.5$$

$$\hat{\nabla} = 0.4645 \times 31.611^{\times}$$

X_{i}	Yi	Ŷ i″	ϵ_{i}
1	10	100	90
2	1000	1000	0
3	10000	10000	0
		$\sum_{i} \varepsilon_{i}^{2} =$	8100

Only about 0.04% of the sum of the squared errors for the other curves!

⊕D.L.Bricker, U. of IA, 1999

The curve which minimizes the squared error in the linear fit to the transformed data does not minimize the squared error in the nonlinear fit to the raw data! Curve Fitting 2/1/99 page 20

X	Y
667	54
727	42
823	34
1086	75
1529	103
1941	87
2266	53
2515	113
3187	137
3218	114

X	Y
3619	106
3865	98
4266	261
4299	197
4382	106
5560	216
5955	251
6358	347
7165	339
7910	282

It is expected that $Y = aX^b$

⊕D.L.Bricker, U. of IA, 1999