Continuous-Time Markov Chains This Hypercard stack was prepared by: Dennis L. Bricker, Dept. of Industrial Engineering, University of Iowa, Iowa City, Iowa 52242 e-mail: dennis-bricker@uiowa.edu ## [Continuous-time Markov Chains] - Definition & Notation - Steadystate Probabilities - Birth-Death Process - I Examples A *discrete-time Markov Chain* changes states only at discrete points in time: ©Dennis Bricker, U. of Iowa, 1997 A continuous-time Markov Chain (CTMC) may change its state at any point in time: The feligeth of time spent in a state before a transition has the *exponential* distribution: ©Dennis Bricker, U. of Iowa, 1997 The *embedded* (discrete-time) Markov chain derived from a CTMC: #### Ք[©]։®Ծուբերևծաց-Քime Marko∨ Chain is a stochastic process {X(t): t≥0} where - X(t) can have values in $S = \{0, 1, 2, 3, ...\}$ - Each time the process enters a state i, the amount of time it spends in that state before making a transition to another state has an exponential distribution with mean time $\frac{1}{\lambda}$. - When leaving state i, the process moves to a state j with probability \mathbf{p}_{ij} where \mathbf{p}_{ii} =0 and $\sum_{i=0}^{M}\mathbf{p}_{ij}$ = 1 - The next state to be visited after state i is independent of the length of time spent in state i ©Dennis Bricker, U. of Iowa, 1997 ### Transition Probabilities $$p_{ij}(t) = P\{X(t+s) = j \mid X(s) = i\}$$ Continuous at t=0, with $$\lim_{t \to 0} p_{ij}(t) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$ $$\left[p_{11}(t) \quad p_{12}(t) \quad \dots \right]$$ $$P(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \cdots \\ p_{21}(t) & \ddots & \\ \vdots & & \end{bmatrix}$$ matrix is a function of time! Transition C-T Markov Chain 10/31/97 page 5 Dennis Bricker, U. of Iowa, 1997 #### Transition Intensity $$\lambda_j = -\frac{d}{dt} \mathbf{p}_{jj}(0)$$ (rate at which the process leaves state j when it is in state j) $$\lambda_{ij} = \frac{d}{dt} \mathbf{p}_{ij}(0) = \lambda_i \ \mathbf{p}_{ij} \quad \begin{array}{l} \text{(transition rate into state j} \\ \text{when the process is in} \\ \text{state i)} \end{array}$$ ©Dennis Bricker, U. of Iowa, 1997 The process, starting in state i, spends an amount of time in that state having exponential distribution with rate λ_i . It then moves to state j with probability $\mathbf{p}_{ij} = \frac{\lambda_{ij}}{\lambda_{i}} \quad \forall \ j,j$ $$1 = \sum_{j=1}^{n} \mathbf{p}_{ij} = \sum_{j=1}^{n} \frac{\lambda_{ij}}{\lambda_{i}} = \frac{\sum_{j=1}^{n} \lambda_{ij}}{\lambda_{i}} \Rightarrow \lambda_{i} = \sum_{j=1}^{n} \lambda_{ij}$$ C-T Markov Chain 10/31/97 page 6 ©Dennis Bricker, U. of Iowa, 1997 ### Chapman-Kolmogorov Equation $$\begin{split} p_{ij}(t+s) &= \sum_{k \in \mathbb{S}} p_{ik}(t) \ p_{kj}(s) \ , \qquad \forall i,j \in S, \\ &\forall s,t \geq 0 \end{split}$$ ©Dennis Bricker, U. of Iowa, 1997 Since p (t) is a continuous function, $$p_{ij}(\Delta t) = p_{ij}(0) + \frac{d}{dt}p_{ij}(0)\Delta t + o(\Delta t^2)$$ But we have defined $\lambda_{ij} = \frac{d}{dt} p_{ij}(0)$ For $$i \neq j$$: $p_{ij}(\Delta t) = p_{ij}(0) + \lambda_{ij} \Delta t + o(\Delta t^2)$ $\approx \lambda_{ij} \Delta t$ for small Δt For $$i=j$$: $p_{ii}(\Delta t) = p_{ii}(0) + \lambda_{ii} \Delta t + o(\Delta t^2)$ $\approx 1 + \lambda_{ii} \Delta t$ for small Δt #### From the Chapman-Kolmogorov equation, $$\begin{split} p_{ij}(t+\Delta t) &= \sum_{k} p_{ik}(t) \, p_{kj}(\Delta t) \\ &= p_{ij}(t) p_{jj}(\Delta t) + \sum_{k \neq j} p_{ik}(t) p_{kj}(\Delta t) \\ &= p_{ij}(t) \left[1 + \lambda_{jj} \Delta t + o(\Delta t^2) \right] \\ &+ \sum_{k \neq j} p_{ik}(t) \left[\lambda_{kj} \Delta t + o(\Delta t^2) \right] \end{split}$$ ©Dennis Bricker, U. of Iowa, 1997 $$\begin{split} p_{ij}(t+\Delta t) &= p_{ij}(t) + \left[\sum_{k} p_{ik}(t) \, \pmb{\lambda}_{kj}\right] \Delta t + \left[\sum_{k} p_{ik}(t)\right] o(\Delta t^2) \\ &\frac{p_{ij}(t+\Delta t) - p_{ij}(t)}{\Delta t} = \sum_{k} p_{ik}(t) \, \pmb{\lambda}_{kj} + \left[\sum_{k} p_{ik}(t)\right] \frac{o(\Delta t^2)}{\Delta t} \end{split}$$ Taking the limit as $\Delta t \rightarrow 0$ $$\frac{d}{dt} p_{ij}(t) = \sum_{k} p_{ik}(t) \lambda_{kj} \quad \forall i, j$$ # The process is described by the system of differential equations: $$\frac{d}{dt} p_{ij}(t) = \sum_{k} p_{ik}(t) \lambda_{kj} \quad \forall i,j$$ 0r $$\frac{d}{dt}P(t) = P(t)\Lambda$$ ©Dennis Bricker, U. of Iowa, 1997 $$\sum_{j} p_{ij}(t) = 1 \qquad A \quad i, t$$ $$\Rightarrow \frac{d}{dt} \sum_{j} p_{ij}(t) = \frac{d}{dt} (1) = 0$$ $$\Rightarrow \sum_{j} \frac{d}{dt} p_{ij}(t) = 0$$ $$\Rightarrow \sum_{j} \lambda_{ij} = 0$$ That is, the sum of each row of Λ is zero! $$\Lambda = \begin{bmatrix} -(\lambda_{12} + \lambda_{13}) & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & -(\lambda_{21} + \lambda_{23}) & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & -(\lambda_{31} + \lambda_{32}) \end{bmatrix}$$ The sum of each row of Λ must equal zero! ©Dennis Bricker, U. of Iowa, 1997 ## Steadystate Probabilities $$\lim_{t\to\infty} p_{ij}(t) = \pi_j$$ (independent of the initial state i) Must be nonnegative and satisfy $$\sum_{i=1}^{n} \pi_i = 1$$ What other equations are needed to determine π ? #### Steadystate Probabilities In the case of discrete-time Markov chains, we used the equations $\pi = \pi P$ i.e., $$\boldsymbol{\pi}_j = \sum_{i=1}^n \; \boldsymbol{\pi}_i \; \boldsymbol{p}_{ij} \; \forall \; \boldsymbol{j}$$ In the case of continuous-time Markov chains, we use what are called "Balance" equations. ©Dennis Bricker, U. of Iowa, 1997 #### **Balance Equations** For each state i, the rate at which the system *leaves* the state must equal the rate at which the system *enters*the state: $$\lambda_i \pi_i = \lambda_{ji} \pi_j + \lambda_{ki} \pi_k + \lambda_{1i} \pi_1$$ An alternate derivation of the steady-state conditions begins with the differential equation describing the process: $$\frac{d}{dt} p_{ij}(t) = \sum_{k} p_{ik}(t) \lambda_{kj} \quad \forall i, j$$ Suppose that we take the limit of each side, as $t \to \infty$ $$\frac{d}{dt} p_{ij}(t) = \sum_{k} p_{ik}(t) \lambda_{kj} \quad \forall i, j$$ #### Birth-Death Process A birth-death process is a continuous-time Markov chain which models the size of a population; the population increases by 1 ("birth") or decreases by 1 ("death"). ©Dennis Bricker, U. of Iowa, 1997 ## Steady-State Distribution of a Birth-Death Process Balance Equations: State 0: $$\lambda_0 \pi_0 = \mu_1 \pi_1 \quad \Rightarrow \quad \boxed{\pi_1 = \frac{\lambda_0}{\mu_1} \pi_0}$$ <u>C-T Markov Chain</u> page 14 # Steady-State Distribution of a Birth-Death Process Balance Equations: State 1: $$(\lambda_1 + \mu_1) \pi_1 = \lambda_0 \pi_0 + \mu_2 \pi_2 \Rightarrow$$ $$\pi_2 = \frac{(\lambda_1 + \mu_1) \pi_1 - \lambda_0 \pi_0}{\mu_2} = \frac{(\lambda_1 + \mu_1) \frac{\lambda_0}{\mu_1} \pi_0 - \lambda_0 \pi_0}{\mu_2}$$ $$\Rightarrow \boxed{\pi_2 = \frac{\lambda_1 \lambda_0}{\mu_2 \mu_1} \pi_0}$$ ©Dennis Bricker, U. of Iowa, 1997 #### In general, $$(\lambda_{i-1} + \mu_{i-1}) \pi_{i-1} = \lambda_{i-2}\pi_{i-2} + \mu_{i}\pi_{i}$$ $$\Rightarrow \pi_{i} = \frac{\lambda_{i-1} \cdots \lambda_{1}\lambda_{0}}{\mu_{i} \cdots \mu_{2}\mu_{1}} \pi_{0} \quad i=1,2,3, \dots$$ C-T Markov Chain 10/31/97 page 15 ©Dennis Bricker, U. of Iowa, 1997 $$\pi_i = \left(\!\frac{\lambda_{i-1}}{\mu_i}\!\right) \cdots \left(\!\frac{\lambda_1}{\mu_2}\!\right) \! \left(\!\frac{\lambda_0}{\mu_1}\!\right) \pi_0$$ ©Dennis Bricker, U. of Iowa, 1997 #### Substituting these expressions for π_i into $$\begin{split} \sum_{i=0}^{\infty} \pi_i &= 1 \qquad yields: \\ \pi_0 + \sum_{i=1}^{\infty} \frac{\lambda_{i-1} \cdots \lambda_1 \lambda_0}{\mu_i \cdots \mu_2 \mu_1} \; \pi_0 \; = 1 \\ \Rightarrow \; \pi_0 \left[1 + \sum_{i=1}^{\infty} \frac{\lambda_{i-1} \cdots \lambda_1 \lambda_0}{\mu_i \cdots \mu_2 \mu_1} \right] &= 1 \\ \Rightarrow \; \boxed{\frac{1}{\pi_0} = \left[1 + \sum_{i=1}^{\infty} \frac{\lambda_{i-1} \cdots \lambda_1 \lambda_0}{\mu_i \cdots \mu_2 \mu_1} \right]} \end{split}$$ Once π_0 is evaluated by computing the reciprocal of this infinite sum, π_i is easily computed for each i=1, 2, 3, ... $$\frac{1}{\pi_0} = \left[1 + \sum_{i=1}^{\infty} \frac{\lambda_{i-1} \cdots \lambda_1 \lambda_0}{\mu_i \cdots \mu_2 \mu_1}\right]$$ $$\pi_{i} = \frac{\lambda_{i-1} \cdots \lambda_{1} \lambda_{0}}{\mu_{i} \cdots \mu_{2} \mu_{1}} \pi_{0} \qquad i=1,2,3, \dots$$ ©Dennis Bricker, U. of Iowa, 1997 #### Examples - Backup Computer System - Multiple Failure Modes - The "Peter Principle" - Gasoline Station - Ticket Sales by Phone C-T Markov Chain 10/31/97 page 17 Example of lowa, 1997 An airlines reservation system has 2 computers, one on-line and one standby. The operating computer fails after an exponentially-distributed duration having mean t_f and is then replaced by the standby computer. There is one repair facility, and repair times are exponentially-distributed with mean t_r . What fraction of the time will the system fail, i.e., both computers having failed? ©Dennis Bricker, U. of Iowa, 1997 Let X(t) = number of computers in operating condition at time t. Then X(t) is a birth-death process. Note that the birth rate in state 2 is zero! $$\frac{1}{\pi_0} = 1 + \frac{1/t_r}{1/t_f} + \left(\frac{1/t_r}{1/t_f}\right)^2$$ $$\frac{1}{\pi_0} = 1 + \frac{t_f}{t_r} + \left(\frac{t_f}{t_r}\right)^2$$ $$\pi_0 = \frac{\mathbf{t}_r^2}{\mathbf{t}_r^2 + \mathbf{t}_r \mathbf{t}_f + \mathbf{t}_f^2}$$ $\pi_0 = \frac{\mathbf{t}_r^2}{\mathbf{t}_r^2 + \mathbf{t}_r \mathbf{t}_f + \mathbf{t}_f^2} \begin{vmatrix} probability & that \\ both & computers \\ have failed \end{vmatrix}$ ©Dennis Bricker, U. of Iowa, 1997 Suppose that $\frac{t_f}{t_m} = 10$, i.e., the average repair time is 10% of the average time between failures: $$\frac{1}{\pi_0} = 1 + 10 + 100 = 111$$ $$\pi_0 = \frac{1}{111} = 0.009009$$ Then both computers will be simultaneously out of service 0.9% of the time. #### Example: Multiple Failure Modes A production system consists of 2 machines, both of which may operate simultaneously, and a single repair facility. The machines each fail randomly, with time between failures having exponential distribution and mean T hours. ©Dennis Bricker, U. of Iowa, 1997 Repair times are also exponentially distributed, but the mean repair time depends upon whether the failure was "regular" or "severe". The fraction of regular failures is p, and the corresponding mean repair time is t_r . The fraction of severe failures is q=1-p, and the mean repair time is t_s . Let T=10 hours, p=90%, $t_r=1$ hour, $t_8=5$ hours. What is the average number of machines in operation? #### Markov Chain Model ### States (0,0): both machines operational (r,0): regular repair in progress, none waiting (r,r): regular repair in progress, regular waiting (r,s): regular repair in progress, severe waiting (s,0): severe repair in progress, none waiting (s,r): severe repair in progress, regular waiting (s,s): severe repair in progress, severe waiting #### ©Dennis Bricker, U. of Iowa, 1997 | р | rate of regular | |-----------------|---------------------| | 一 | failures | | <u>a</u> | rate of severe | | T | failures | | $\frac{1}{t_r}$ | regular repair rate | | $\frac{1}{t_s}$ | severe repair rate | ©Dennis Bricker, U. of low<mark>s, 1997</mark> Transition rate matrix | | to | | | | | | | | |-------------|---------|---------------------------------|------------------------------------|----------------------------------|-------------------------|-----------------------------------|-----------------------------|--------------------------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | f
o
m | 1234567 | -0.2
1
0.2
0
0
0 | 0.18
-1.1
0
1
0
0.2 | 0.02
0
-0.3
0
1
0 | 0.09
0.09
-1
0 | 0.01
0.01
0
0
-1
0 | 0
0.09
0
0
-0.2 | 0
0.01
0
0
0 | | i | name | |---------|---| | 1004567 | 0,00
(r,00
(r,00
(r,00
(r,00
(r,00
(r,00) | ©Dennis Bricker, U. of Iowa, 1997 #### Steadystate Distribution | i | state | Pi | |---------------------------------|--|---| | 1
2
3
4
5
6
7 | (0,0)
(r,0)
(s,0)
(r,r)
(r,s)
(s,r)
(s,r)
(s,s) | 0.7596253902
0.1404786681
0.05723204995
0.01264308012
0.001404786681
0.02575442248
0.002861602497 | ©Dennis Bricker, U. of Iowa, 1997 | i | state | Pi | С | Pi×C | |---------------------------------|---|---|-----------------------|---| | 1
2
3
4
5
6
7 | (0,0)
(r,0)
(s,0)
(r,r)
(r,s)
(s,r)
(s,s) | 0.7596253902
0.1404786681
0.05723204995
0.01264308012
0.001404786681
0.02575442248
0.002861602497 | 2
1
0
0
0 | 1.51925078
0.1404786681
0.05723204995
0
0 | The average cost/period in steady state is 1.716961498 $1.716961498 \div 2 = 0.858480749$ In steady state, the system will operate at approximately 85.8% of capacity. ©Dennis Bricker, U. of Iowa, 1997 Simulation results Random seed: 675247 Initial state: 1 | state | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|-----------------------|------------------------|----------------------|---------------------|---|----------------------|-----| | # visits
time in state
% total time | 23
19.814
9.907 | 24
138.53
69.264 | 2
15.713
7.856 | 2
1.661
0.830 | 0 | 2
10.381
5.190 | 000 | #### Example: The Peter Principle The draftsman position at a large engineering firm can be occupied by a worker at any of three levels: T= Trainee J = Junior Draftsman S = Senior Draftsman ©Dennis Bricker, U. of Iowa, 1997 Assume that a Trainee stays at a rank for an exponentially-distributed length of time (with parameter a_t) before being promoted to Junior Draftsman. A Junior Draftsman stays at that level for an exponentially-distributed length of time (with parameter $a_j = a_{jt} + a_{js}$). Then he either leaves the position and is replaced by a Trainee (with probability a_{jt}/a_j), or is promoted to a Senior Draftsman (with probability a_{js}/a_i). ©Dennis Bricker, U. of Iowa, 1997 Senior Draftsmen remain in that position an exponentially-distributed length of time (with parameter a_s) before resigning or retiring, in which case they are replaced by a Trainee. The rank of a person in a draftsman's position may be modeled as a continuous-time Markov chain ©Dennis Bricker, U. of Iowa, 1997 For example, suppose that the mean time in the three ranks are: | State | Mean Time | |-------|-----------| | Т | 0.5 years | | J | 1 year | | S | 5 years | and that a Junior Draftsman leaves and is replaced by a Trainee with probability 40% and is promoted with probability 60% #### ODennis Bricker, U. of Iowa, 1997. #### Steadystate Distribution i.e., 11% of draftsmen are trainees, 22% are at junior rank, & 67% at senior rank ©Dennis Bricker, U. of Iowa, 1997 The duration that people spend in any given rank is not exponentially distributed in general. A **bimodal** distribution is often observed in which many people leave (are promoted) rather quickly, while others persist for a substantial time. The "Peter Principle" asserts that a worker is promoted until first reaching a position in which he or she is incompetent. When this happens, the worker stays in that job until retirement. ©Dennis Bricker, U. of lows, 1997 Let's modify the above model by classifying 60% of the Junior Draftsmen as Competent and 40% as Incompetent, represented by states C and I, respectively. Suppose that incompetent draftsmen stay at that rank until quitting or retirement (an average of 1.75 years) and competent draftsment are promoted (after an average of 0.5 years), so that the average time spent in the rank is still $$(0.6)(.5) + (0.4)(1.75) = 1$$ year ©Dennis Bricker, U. of Iowa, 1997 $$\begin{array}{l} \text{balance} \left\{ \begin{array}{l} 1.2 \; \pi_t = 0.571 \; \pi_i + 0.2 \; \pi_s \\ 2 \; \pi_c = 1.2 \; \pi_t \\ 0.571 \; \pi_i = 0.8 \; \pi_t \\ 0.2 \; \pi_s = 2 \; \pi_c \\ \pi_t + \pi_c + \pi_i + \pi_s = 1 \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} \pi_t = 0.111 \\ \pi_c = 0.067 \\ \pi_i = 0.155 \\ \pi_s = 0.667 \end{array} \right. \end{array}$$ $$\begin{cases} \pi_t = 0.111 \\ \pi_c = 0.067 \\ \pi_i = 0.155 \end{cases} total = 0.222 \ as before \\ \pi_s = 0.667 \qquad \qquad \left(\frac{0.067}{0.222} \ = \ 30\% \right)$$ While only 40% of the draftsmen promoted to junior rank are incompetent, we see that the rank of junior draftsmen is 70% filled with incompetent persons! ©Dennis Bricker, U. of Iowa, 1997 A gasoline station has only one pump. Cars arrive at the rate of 20/hour. However, if the pump is already in use, these potential customers may "balk", i.e., drive on to another gasoline station. If there are n cars already at the station, the probability that an arriving car will balk is $\frac{n}{4}$, for n=1,2,3,4, and 1 for n>4. Time required to service a car is exponentially distributed, with mean = 3 minutes. What is the expected waiting time of customers? #### Birth/death" model: $$\frac{1}{\pi_0} = 1 + \frac{20}{20} + \frac{20}{20} \times \frac{15}{20} + \frac{20}{20} \times \frac{15}{20} \times \frac{10}{20} + \frac{20}{20} \times \frac{15}{20} \times \frac{10}{20} \times \frac{5}{20}$$ $$= 1 + 1 + 0.75 + 0.375 + 0.09375 = 3.21875$$ $$\pi_0 = 0.3106796$$ ©Dennis Bricker, U. of Iowa, 1997 #### Steady State Distribution $$\pi_0 = 0.3106796,$$ $\pi_1 = \pi_0 = 0.3106796,$ $\pi_2 = 0.75\pi_0 = 0.2330097,$ $\pi_3 = 0.375\pi_0 = 0.1165048,$ $\pi_4 = 0.09375\pi_0 = 0.0291262$ #### Average Number in System $$L = \sum_{i=0}^{4} i \pi_{i}$$ = 0.3106796 + 2(0.2330097) + 3(0.1165048)+ 4(0.0291262) = 1.2427183 ©Dennis Bricker, U. of Iowa, 1997 #### Average Arrival Rate $$\overline{\lambda} = \sum_{i=0}^{4} \lambda_i \, \pi_i$$ = $(0.3106796) \times 20/hr + (0.3106796) \times 15/hr$ + $(0.2330097) \times 10/hr + (0.1165048) \times 5/hr$ + $(0.0291262) \times 0/hr$ = $13.786407/hr$ #### Average Time in System $$W = \frac{L}{\lambda} = \frac{1.2427183}{13.786407/hr}$$ = 0.0901408 hr. = 5.40844504 minutes ©Dennis Bricker, U. of Iowa, 1997 - Hancher Auditorium has 2 ticket sellers who answer phone calls & take incoming ticket reservations, using a single phone number. - In addition, 2 callers can be put "on hold" until one of the two ticket sellers is available to take the call. - If all 4 phone lines are busy, a caller will get a busy signal, and waits until later before trying again. Calls arrive at an average rate of 2/minute, and ticket reservations service time averages 20 sec. and is exponentially distributed. #### What is... - the fraction of the time that each ticket seller is idle? - the fraction of customers who get a busy signal? - the average waiting time ("on hold")?