"Customers" arrive in batches of size K, with batch arrivals forming a Poisson process with rate λ.

Service time for each customer has exponential distribution with mean $\frac{1}{K\mu}$, i.e., time to process the batch has mean $\frac{1}{\mu}$.
Continuous-Time Markov Chain

K=3

Not a birth-death process!

Continuous-Time Markov Chain

K=3

This C-T Markov chain is equivalent to that for the M/E_k/1 queue!
Bulk Arrivals, with Random-Sized Batches

Let \(\lambda \) = arrival rate of batches
\[\alpha_k \] = probability that batch contains \(k \) customers, \(k = 1, 2, 3, \ldots K \)
\(\mu \) = service rate for each customer

\[\begin{align*}
\lambda \pi_0 &= \mu \pi_1 \\
\vdots & \\
[(\alpha_1 + \alpha_2 + \cdots)\lambda + \mu] \pi_m &= \mu \pi_{m+1} + \sum_{k=1}^{m-1} \alpha_k \lambda \pi_{m-k}
\end{align*} \]

© D. Bricker, U. of Iowa, 1997