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Abstract. We consider a paradigm of linear optimization in the face of
uncertainty, in which (first-stage) decisions must be made before the uncertainty
Is resolved, and then recourse (second-stage decisions) is available to
compensate. When a finite set of scenarios can be identified and their probability
estimated, and the objective is to minimize the sum of the first-stage cost and the
expected value of the second-stage cost, a (generally large) deterministic
equivalent LP problem can be constructed. Benders' (primal) decomposition
and Lagrangian (dual) decomposition each yields a family of smaller
subproblems, one for each scenario, and a coordinating "master"” problem. Cross-
decomposition is a hybrid primal-dual iterative approach which eliminates the
master problems and uses the primal and dual subproblems to provide both

upper and lower bounds on the optimal expected cost at each iteration. A small
example illustrates the computation.
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EXAMPLE

A farmer raises wheat, corn, and sugar beets on 500 acres of land. Before the planting
season he wants to decide how much land to devote to each crop.

At least 200 tons of wheat and 240 tons of corn are needed for cattle feed, which can be
purchased from a wholesaler if not raised on the farm.

Any grain in excess of the cattle feed requirement can be sold at $170 and $150 per ton of
wheat and corn, respectively.

The wholesaler sells the grain for 40% more (namely $238 and $210 per ton,
respectively.)

Up to 6000 tons of sugar beets can be sold for $36 per ton; any additional amounts can be

sold for $10/ton.



DATA

Wheat Corn Sugar Beets
Average Yield 25T/Acre 3 T/Acre 20 T/Acre
Planting cost $150/Acre  $230/Acre  $260/Acre
Selling price $170/T $150/T $36/T first 6000T
$10/T otherwise
Purchase price $238/T $210/T
Minimum Rgmt  200T 240T




DECISION VARIABLES

We distinguish between two types of decisions:
First stage (before growing season):

X1 = acres of land planted in wheat

X, = acres of land planted in corn

X3 = acres of land planted in beets
Second stage (after harvest):

w; = tons of wheat sold

w; = tons of corn sold

w3 = tons of beets sold at $36/T

w, = tons of beets sold at $10/T

y1 = tons of wheat purchased

Yy, = tons of corn purchased



LINEAR PROGRAMMING MODEL
Minimize 150x, +230x,+260x,+238y, - 170w, +210y., - 150w, - 36w, - 10w,
subject to

X, + X%, + % £500
2.5x +y, -w 3200
3X, +y,-w,3 240
W, +w, £ 20x;
w, £ 6000
x30,i=1,23;y. 3 0,i=1,2;,w 3 0,i=1,2,3,4



OPTIMAL SOLUTION

Profit = $118,600

Wheat Corn Sugar Beets

Plant 120 Acres 80 Acres 300 Acres
Yided 300T 240T 6000T
Sales 100T -- 6000T

Purchase |-- - -




In actuality, crop yields are uncertain, depending upon weather conditions
during the growing season.
Three scenarios have been identified

"good" (20% higher than average)

"fair" (average)

"bad" (20% below average),

each equally likely:

Scenario Wheatyield Corn yield Beet yield

k (tong/acre) (tong/acre) (tons/acre)
1.Good 3 3.6 24
2. Fair 2.5 3 20

3. Bad 2 24 16




Scenario #1: "Good" Yield: Optimal Profit = $167,667

Wheat Corn Sugar Beets
Plant 183.333 Acres 66.67 Acres 250 Acres
Yied 550T 240T 6000T
Sales 350T -- 6000T
Purchase |-- -- --

Scenario #3: "Bad" Yield: Optimal Profit = $59,950
Wheat Corn Sugar Beets
Plant 100 Acres 25 Acres 375 Acres

Yield 200T 60T 6000T
Sales -- -- 6000T
Purchase |-- -- --

If aperfect forecast was available, then, the expected profit would be

14 $167,667+ 14" $118,600+ 14~ $59,950 = $115,406



The stochastic decision problem is to optimize the first-stage cost plus the expected
second-stage costs.

3
Minimize 150 +230x, + 260x,+ %28 Q. (x)
k=1

subject to x, + X, + X, £500
X; 3 0,j=1,2,3

where

Q. (x) = second-stage costs in scenario k, if first-stage decisions x have been
Implemented

11



Q. (x) = Minimum 170w; +150w, + 36w, +10w, - 238y, - 210y,
st.y, - w, 3 200- 3%,
Y, - W, 3 240- 3.6X,
W, +w, £ 24X,
y,30,y,30.w,3 0,w,3 0, 0£w, £ 6000,w, 3 0

Q, () = Minimum 170w; +150w, + 36w, +10w, - 238y, - 210y,
st.y, - w, 3 200- 2.5%;
Y, - W, 3 240- 3X,
W, +w, £ 20X,
y,*0vy,20 w,30,w,30, 0Ew, £6000,w,3 0

Q; (x) = Minimum 170w, +150w, + 36w, +10w, - 238y, - 210y,
st.y, - w, 3 200- 2x,
Y, - W, 3 240- 2 .4x,
W, +w, £16X%,
v,*0,v¥,20 w3 0,w,30, 0Ew, £6000,w,3 0




TWO-STAGE LINEAR PROGRAMMING WITH RECOURSE

Minimize z=cx+ EgminCI(W)Y(W)EI

subject to
Ax=Db
T (w)x+Wy(w) =h(w),
x3 0,y(w)3 0
where

X = first-stage decision
and

y(w) = second-stage decision after random event w is observed
which must satisfy the second-stage constraints

T (w)x+Wy(w) = h(w),

where gq(w), T(w) & h(w) are random variables

X-Decomposition of Stochastic LP 10/05/00 page
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DETERMINISTIC EQUIVALENT PROBLEM

Assume afinite number of scenarios.

For each scenario k, define a set of second-stage variables, Y*, and arrays T, , q,, and h,

The objective is to minimize the expected total costs of first and second stages

K
Minimizecx+Q pQ.(x)

k=1
subject to xI X

where the cost of the second stageis

Q. (x) =Minimum {qg,y:Wy =h, - Tx, y 2 0}

X-Decomposition of Stochastic LP 10/05/00 page 14



Consider the deterministic LP derived from the 2-stage stochastic LP:

K
Z=mincx+gQ p.a v

k=1

subject to

Tkx+V\/yk =h .,k =1,...K;
xI X

v 2 0,k=1...K

where the feasible set of first-stage decisions is defined by

X :{XT R": Ax=b, x3 O}

X-Decomposition of Stochastic LP 10/05/00 page
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EXAMPLE:

Second stage decisions:

For each scenario k (k=1,2,3), define a set of decision variables:
W= tons of wheat sold
W, = tons of corn sold
W, = tons of beets sold at $36/T
w, = tons of beets sold at $10/T
y;' = tons of wheat purchased

ys = tons of corn purchased

X-Decomposition of Stochastic LP 10/05/00 page



DETERMINISTIC EQUIVALENT LP:

Minimize 150, + 230x, + 260x, + %(238% - 170w, +210y; - 150w, - 36w} - 10w} )
+ %(238y12 - 170w +210Y; - 150w - 36W5 - 10w} )

+ %(zssyf - 170w} +210Y; - 150w - 36w} - 10w} )

subject to
X + X% + X, £500

Scenario 1 Scenario 2 Scenario 3

3x +y - W3 200 25% + V2 - WP3 200 2% +yE- wP3 200
3.6x, +y;-W;3 240  3x,+Vyo- W3 240 2.4x,+Yy; - w3 240
24%, - Wwy- Ww;3 0 20%,- We- w;3 0 16, - W - W, 3 0
w; £ 6000 w. £ 6000 w; £ 6000

x 3 0,i1=1,2,3,
y¥30,i=1,2 & k=1,2,3;
w3 0,i=1,2,34 & k=1,2,3

Thus, all possible second-stage decisions are made simultaneously, in asingle large LP.

X-Decomposition of Stochastic LP 10/05/00 page 17



Optimal Solution: Expected profit= $108,390

Wheat Corn Sugar Beets
First stage Plant: 170 Acres 80 Acres 250 Acres
k=1 Yied 510T 288 T 6000 T
"Good yield" | Sales 310 T 48T 6000 T
Purchase -- -- --
k=2 Yied 425 T 240 T 5000 T
"Fair yield" Sales 225T -- 5000T
Purchase -- --
k=3 Yied 340 T 192T 4000 T
"Badyield" | Sales 140 T -- 4000 T
Purchase -- 48T --

" Using the original solution (where expected values of yields were assumed, i.e,,
planting 120 acres of wheat, 80 acres of corn, & 300 acres of beets) his expected profit
would be $107,240 (which is $1,150 less than the optimal expected value) .

The Expected Value of Perfect Information is $115,406 - $108,390 = $7016

X-Decomposition of Stochastic LP 10/05/00 page 18



"SPLITTING" FIRST-STAGE VARIABLES

For each scenario k, define afirst-stage decision x* which must equal the original first-

stage decision (which we now denote by XO). We can then write the equivalent LP:

K
Z=mincx, +Q Py

k=1
subject to
X1 X
TX+Wy“=h, k=1, ..K
X’ =X, k=1, ..K
X3 0, k=1, ..K

In order to separate the LP by scenario, we need to "relax” the constraints

XX =x k=1...K;

19



L AGRANGIAN RELAXATION

Given afamily of Lagrangian multiplier vectors| , k=1,...K, we define the relaxation:

K K
D( ):mincx0+k§__1 PG Y +;a_1l k(xk - XO)
subject to x°T X

T X +Wy“ =h k =1,...K;
X3 0, k=1...K; y3 0, k=12,..K

That is,
_ . % OK 6 0 OK 7 k k\
D(| )—mmgc' alycx'+tagdx +payy
k=t @ k=1

subject to the above constraints.

20



Thisis motivated by the fact that the problem then separates into K+1 subproblems:

D(1)=D,(l,,...1 ()+a D(1)
k=1
where
«
Dy(I )=minZe- g1, 2xX°
3 k=1 @

subject to X°T X

and, for each k=1, ...K:
D, (I ) =minl ,x* + p.q y*
subject to T X“ +Wy* =h_

x30,y30



Dual Subproblem 0 Dual Subproblem for

for 1% Stage Scenario k, k=1, ...K
mina?:-glkgxo Minl , x* +p,qy"
& & o subject to
~ k K —
subject to X°T X T X" +Wy* =h,
X“30,y30

K
Thevalue D(I ) =D, (l,,...I « )+ @ Dy (I ) provides alower bound on the optimal
k=1

cost Z.

The Lagrangian dual problem isto select the multipliers which will produce the tightest

such lower bound:
D:meU)

Note: Inthelinear case, D = Z and thereis no "duality gap".



Master Problem:
Adjust multipliers |

Lagrangian Subproblems:
Dk(l ), k=0,1,..K

y

Yes
Converged? |— STOFP

e
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BENDERS DECOMPOSITION

Benders partitioning (commonly known in stochastic programming as the "L -Shaped
Method") achieves separability of the second stage decisions, but in adifferent manner.

Given afirst-stage decision x°, solve for each scenario k=1, ...K the second-stage LP:
P (xo) =ming, y*
subjectto Wy* =h - T.x° y*3 0

k
Then P(XO) =cx°+3 pP (XO) provides us with an upper bound on the optimal cost
k=1

Z, i.e,
D(I1 )£Z£P(X°)

24



Furthermore, solving each LP provides us with avector |, of dual variables

corresponding to the constraints xX° = x~.

If pxisthedual solution of the LP
Pk(xo): ming, y*
subjectto Wy =h - T.x° y“3 0

thenl, =-T'p,

25



An aside: Computing | ,:
The dual of
Min g, y*
subject to
T X +Wy“=h,
Xk — XO,
X3 0
Isthe LP
Max hp, +x°I
subject to:
Tp . +Il,=0
W'p, £q,

If we eliminate | , using the equality constraint, we obtain |, =-Tp, andthedua LP
M ax (hk - Tkxo)pk
subject to
W'p, £q,

26



The original problem now is seen to be equivaent to

K
Mincx®+3 p.R (x°)
k=1

subjectto X°T X

By making use of dual information obtained after M evaluations of B, (XO), Benders

procedure forms an approximation (a convex piecewise-linear function) of P, (xo ):
0)3 i O i
R max {2 +b}

so that the original problem reduces (with introduction of new variables g, )to

K
MincX + & pa.

k=1
subject to X°T X
and

q.%a/ x’+b/,i=1, ..M; k=1, ..K

27



That is, we have approximated B, (xo) by the maximum of afinite number of linear
functions, i.e., by a piecewise-linear convex function:

N\

™

28



Benders' Master Problem:
Select first-stage decisions x0

x0

Benders' Subproblems:
Solve Py (x9), k=1,2,..K

Yes
(o) s

No
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In either the Lagrangian relaxation approach or Benders' decomposition, the burden of
the computation lies in the respective master problems. searching for the optimal | in the
case of Lagrangian relaxation, & searching for the optimal x° in the case of Benders

decomposition.

The subproblems, being L Ps separable by scenario, are easily solved in comparison.



Benders' Master Problem:
> Select first-stage decisions x0

x0

Benders' Subproblems:
Solve Py(x9), k=1,2,...K

Yes
(e )

No

Master Problem:
Adjust multipliers |

Lagrangian Subproblems:
Dk(l ), k=01,..K

Yes
Converged? |——»STOP

STOP

No
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CR0OSS-DECOMPOSITION

Cross-decomposition is a hybrid of Benders decomposition and Lagrangian relaxation, in
which the subproblem of each algorithm serves the purpose of the master problem of the
other.

That is, Benders subproblem receives the first-stage decisions x° from the Dual

subproblem D, rather than from the Benders' master problem.

Primal Subproblem for I nformation Dual Subproblem O for
Scenario k exchange 1% Stage
Min X e &0
» f:qky o L Min 2e- g | X°
Su kJeC 0 . a4 4"31/}1@@ 8 k=t @
Wy —(hK - TkX ) ~ Y subject to
“3 X fix 2

Likewise, the Dual subproblem D, receives the necessary multipliers| from the

Benders subproblem, rather than from the Dual master problem.

X-Decomposition of Stochastic LP 10/05/00 page 32



CROSS-DECOMPOSITION

Note that the algorithm can be "streamlined"-- only one of the dual subproblems Dq(l )

needs to be solved at each iteration, except when the termination criterion

P(x°)- D(I )£e

IS to be tested.
, I
Benders — | Lagrangian
Subproblems: Subproblems:
Solve P(x9), k=1,2,..K X0 Dk(l ), k=0,1,..K

X-Decomposition of Stochastic LP 10/05/00 page



MEAN VALUE CROSS DECOMPOSITION

Convergenceisimproved if the mean of all previously generated Lagrangian multipliers

and first-stage decisions are sent to the Lagrangian and Benders' subproblems,

respectively.
Benders | L Lagrangian
Subproblems;. [ ™ Average | — Subproblems:
Solve Py (x9), Solve Di(l ),
k=1,2,..K «|Average i | k=01,.K
X0 X0

X-Decomposition of Stochastic LP 10/05/00 page



EXAMPLE
The cross-decomposition algorithm described above was implemented in the APL
language (APL+WIN 3.0). First, the mean of all prior primal & dual solutions was used

at each iteration. The result after 100 iterations was as follows:;

Total cost: 106456.94, found at iteration #72

Best | ower bound: 110752.17
Gap= 4295. 23, or 4.03%

St age One Vari abl es:
i X[i]

A WN PR
N
Ul
o
o
o

X-Decomposition of Stochastic LP 10/05/00 page



The plot of upper & lower bounds at each iteration :
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Ta00004
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The mean values of first-stage variables used in the primal subproblems at each iteration.
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As an alternative, exponential smoothing (with smoothing factor 10%) was used for both
primal and dual solutions. After 100 iterations, the following was the best solution

found:

Total cost: 108210.7881, found at iterati on #68

Best | ower bound: 111187.0364
Gap= 2976. 24833, or 2.750417387%

Stage One Vari abl es:
[ Xi]

A OWNPEF
N
a1
o
(0]
\l

This solution is very nearly optimal. (Optimal solution is - $108390.)

X-Decomposition of Stochastic LP 10/05/00 page 33
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RESEARCH |SSUES

1. Given that the number of scenariosis extremely large (or probability distributions are continuous
and not discrete), how does one do "sampling" of scenarios in the cross-decomposition algorithm?

2. How can the cross-decomposition algorithm be extended to multi-(i.e., greater than 2) stages?

3. Given uncertainty in the parameters of the probability distributions describing future scenarios,
perhapsit is not appropriate to continue iterations until the duality gap between upper & lower
boundsis nearly zero-- can we determine an appropriate gap between upper & lower bound for a
termination criterion for the cross-decomposition algorithm?

4. Case of integer first-stage decisions.

" The Lagrangian subproblems Dy(l ) for scenarios k=1,...K are now mixed-integer LP
problems, which are substantially more difficult to solve.

" The computational savings obtained by solving only the Lagrangian subproblem Dg(l ) and not
the Lagrangian subproblems Dy(l ) for scenarios k=1,...K at every iteration become more
significant!

 The Lagrangian subproblems Dy(l ) for scenarios k=1,...K may occasionally be solved, in
order to test the duality gap as atermination criterion. How can information about the dual
variables gathered from Benders' subproblems be accumulated in order to construct a Benders

master problem for each individual Dy(l )?

X-Decomposition of Stochastic LP 10/05/00 page 40
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