

© Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

A processing system is composed of **two stations in tandem**.

- The arrival of jobs at station #1 is a Poisson process with a rate of 4/hour, but station #1 can accept jobs only when it is idle.
- The processing time at each station is exponentially distributed with a mean of 10 minutes.
- There is room in the system for only two jobs, one at each station.
- No queueing between stations or before the first station is permitted.

A job which completes processing at the first station when the second station is busy will remain at the first station, "blocking it", i.e., preventing it from accepting a new job.

Compute the steady-state probabilities.

Compute the throughput rate for the system.

Transition Rate Matrix

	00	10	01	11	b1
00	-4	4	0	0	0
10	0	-6	б	0	0
01	6	0	-10	4	0
11	0	6	0	-12	6
b1	0	0	6	0	-б

Steady-state equations:

$$\begin{cases} -4\pi_{00} + 6\pi_{01} = 0 \\ 4\pi_{00} - 6\pi_{10} + 6\pi_{11} = 0 \\ 6\pi_{10} - 10\pi_{01} + 6\pi_{b1} = 0 \\ 4\pi_{01} - 12\pi_{11} = 0 \\ 6\pi_{11} - 6\pi_{b1} = 0 \end{cases}$$

& $\pi_{00} + \pi_{10} + \pi_{01} + \pi_{11} + \pi_{b1} = 1$

Steady-state Distribution

i	state	$\pi_{_{i}}$
1	00	0.3333
2	10	0.2963
3	01	0.2222
4	11	0.0741
5	b1	0.0741

What is the average throughput of the system?

Jobs are completed at the rate **6/hr** when system is in states 3, 4, & 5,

having total probability **0.3704**.

Therefore the **throughput** is $0.3704 \times 6/hr = 2.222/hr$.

(or $4/hr \times (\pi_{00}+\pi_{01}) = 2.222/hr$.)