Tandem Stations

 with Blocking
© Dennis L. Bricker
Dept of Mechanical \& Industrial Engineering The University of Iowa

A processing system is composed of two stations in tandem.

- The arrival of jobs at station $\# 1$ is a Poisson process with a rate of 4 /hour, but station \# 1 can accept jobs only when it is idle.
- The processing time at each station is exponentially distributed with a mean of 10 minutes.
- There is room in the system for only two jobs, one at each station.
- No queueing between stations or before the first station is permitted.
- A job which completes processing at the first station when the second station is busy will remain at the first station, "blocking it", i.e., preventing it from accepting a new job.

Compute the steady-state probabilities.
Compute the throughput rate for the system.

The state of the system is 2-dimensional: denote the state of each station by
0) idle

1) busy and, for station \#1,
b) "blocked".

The possible states of the system are therefore

1. $(0,0)$
2. $(1,0)$
3. $(0,1)$
4. $(1,1)$
5. (b, 1)

Transition Rate Matrix

	$\mathbf{0 0}$	$\mathbf{1 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{b 1}$
$\mathbf{0 0}$	-4	4	0	0	0
$\mathbf{1 0}$	0	6	6	0	0
$\mathbf{0 1}$	6	0	-10	4	0
$\mathbf{1 1}$	0	6	0	-12	6
$\mathbf{b 1}$	0	0	6	0	-6

Steady-state equations:

$$
\begin{aligned}
& \left\{\begin{array}{r}
-4 \pi_{00}+6 \pi_{01}=0 \\
4 \pi_{00}-6 \pi_{10}+6 \pi_{11}=0 \\
6 \pi_{10}-10 \pi_{01}+6 \pi_{b 1}=0 \\
4 \pi_{01}-12 \pi_{11}=0 \\
6 \pi_{11}-6 \pi_{b 1}=0
\end{array}\right. \\
& \& \pi_{00}+\pi_{10}+\pi_{01}+\pi_{11}+\pi_{b 1}=1
\end{aligned}
$$

Steady-state Distribution

\mathbf{i}	state	$\boldsymbol{\pi}_{\mathbf{i}}$
1	00	0.3333
2	10	0.2963
3	01	0.2222
4	11	0.0741
5	b1	0.0741

What is the average throughput of the system?

Jobs are completed at the rate $\mathbf{6 / h r}$ when system is in states $3,4,85$, having total probability 0.3704 .
Therefore the throughput is $0.3704 \times 6 / \mathrm{hr}=\mathbf{2 . 2 2 2} / \mathbf{h r}$.

$$
\left(\text { or } \mathbf{4} / \mathbf{h r} \times\left(\pi_{00}+\pi_{01}\right)=\mathbf{2 . 2 2 2} / \mathbf{h r} .\right)
$$

