Nearest Neighbor Algorithm for the Traveling Salesman Problem

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dennis-bricker@uiowa.edu
The "Nearest Neighbor" heuristic is a "greedy" algorithm which constructs a tour by adding, at each step, the node which is nearest (among those not yet added to the tour) to the node which was added at the previous step. When all nodes have been added, the tour is completed by returning to the beginning node.
The "Nearest Neighbor" heuristic algorithm constructs a tour as follows:

step 0: Select an initial node \(\hat{i} \).

Let \(N' \) denote the set of nodes \(N - \{ \hat{i} \} \)
Let \(T = \emptyset \)

step 1: Let \(\hat{j} = \arg \min_{j \in N'} \{ d_{\hat{i}j} \} \)

step 2: Add arc \((\hat{i}, \hat{j})\) to the tour \(T \).

Let \(N' = N' - \{ \hat{j} \} \) and \(\hat{i} = \hat{j} \).

step 3: If \(N' = \emptyset \), STOP. Else return to step 1.
Note that the resulting tour T depends upon the initial arbitrarily-selected node with which to begin the tour.
Random Symmetric TSP
(seed= 133398)

©Dennis Bricker, U. of Iowa, 1997
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>19</td>
<td>30</td>
<td>50</td>
<td>62</td>
<td>75</td>
<td>89</td>
<td>81</td>
<td>86</td>
<td>95</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>0</td>
<td>16</td>
<td>34</td>
<td>45</td>
<td>57</td>
<td>70</td>
<td>63</td>
<td>71</td>
<td>80</td>
<td>82</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>16</td>
<td>0</td>
<td>41</td>
<td>48</td>
<td>54</td>
<td>62</td>
<td>54</td>
<td>56</td>
<td>65</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>34</td>
<td>41</td>
<td>0</td>
<td>16</td>
<td>34</td>
<td>54</td>
<td>51</td>
<td>75</td>
<td>82</td>
<td>99</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>45</td>
<td>46</td>
<td>16</td>
<td>0</td>
<td>18</td>
<td>39</td>
<td>38</td>
<td>66</td>
<td>72</td>
<td>94</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>57</td>
<td>54</td>
<td>34</td>
<td>18</td>
<td>0</td>
<td>21</td>
<td>23</td>
<td>55</td>
<td>59</td>
<td>88</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>89</td>
<td>70</td>
<td>62</td>
<td>54</td>
<td>39</td>
<td>21</td>
<td>0</td>
<td>10</td>
<td>42</td>
<td>43</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>63</td>
<td>54</td>
<td>51</td>
<td>38</td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>34</td>
<td>37</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>86</td>
<td>71</td>
<td>56</td>
<td>75</td>
<td>66</td>
<td>55</td>
<td>42</td>
<td>34</td>
<td>0</td>
<td>9</td>
<td>37</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>80</td>
<td>65</td>
<td>82</td>
<td>72</td>
<td>59</td>
<td>43</td>
<td>37</td>
<td>9</td>
<td>0</td>
<td>40</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>82</td>
<td>66</td>
<td>99</td>
<td>94</td>
<td>88</td>
<td>78</td>
<td>69</td>
<td>37</td>
<td>40</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>12</td>
<td>56</td>
<td>44</td>
<td>55</td>
<td>16</td>
<td>29</td>
<td>47</td>
<td>67</td>
<td>66</td>
<td>91</td>
<td>98</td>
<td>115</td>
<td>0</td>
</tr>
</tbody>
</table>

©Dennis Bricker, U. of Iowa, 1997
Let's arbitrarily begin with node #5

It's nearest neighbor is node #4

©Dennis Bricker, U. of Iowa, 1997
The nearest unvisited neighbor of node #4 is node #12
The nearest unvisited neighbor of node #12 is node #2
The nearest unvisited neighbor of node #2 is node #3

(Clearly the better node to visit next would be #1, but this algorithm lacks foresight!)

©Dennis Bricker, U. of Iowa, 1997
The nearest unvisited neighbor of node #3 is node #1

... etc.

©Dennis Bricker, U. of Iowa, 1997
Nearest Neighbor Tour: 5 4 12 2 3 1 6 7 8 9 10 11 5, with length 405

(Starting with node #5)
Nearest Neighbor Tour: 1 2 3 4 5 6 7 8 9 10 11 12 1, with length 395

(Starting at node #1)

Different starting nodes result in different tours!

©Dennis Bricker, U. of Iowa, 1997
Nearest Neighbor Tour: 6 5 4 12 2 3 1 8 7 9 10 11 6, with length 410

(Starting with node #6)

©Dennis Bricker, U. of Iowa, 1997