Nearest Insertion Algorithm for the Traveling Salesman Problem

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
iowa City, iowa 52242
e-mail: dennis-bricker@uiowa.edu
The "Nearest Insertion" heuristic algorithm constructs a tour, starting with an arbitrary node. Each step begins with a subtour, and selects the node which is *nearest* to the set of nodes on the subtour to be added to the subtour. After selecting the node k to be added, an edge (i,j) is selected and the edges (i,k) and (k,j) then replace the edge (i,j). The edge (i,j) is selected so as to minimize the increase in the length of the subtour, i.e.,

$$d_{ik} + d_{kj} - d_{ij}$$

© Dennis Bricker, U. of Iowa, 1997
The "Nearest Insertion" heuristic constructs a tour for the TSP as follows:

step 0: Select an initial node \hat{i}.

Let N' denote the set of nodes $N - \{\hat{i}\}$

Let $T = \{ (\hat{i}, \hat{i}) \}$

step 1: Let $\hat{j} = \arg\min_{j \in N'} \left[\min_{i \in T} \{d_{ij}\} \right]$

step 2: Let $(i', i'') = \arg\min_{(i_1, i_2) \in T} \{d_{i_1j} + d_{ji_2} - d_{i_1i_2} \}$
step 3: Replace arc \((i_1, i_2)\) in the tour \(T\) with the pair of arcs \((i_1, \hat{j})\) and \((\hat{j}, i_2)\). Let \(N' = N' - \{\hat{j}\}\) and \(i = \hat{j}\).

step 4: If \(N' = \emptyset\), STOP. Else return to step 1.
Example

Random Symmetric TSP
(seed = 133398)
Distances

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>19</td>
<td>30</td>
<td>50</td>
<td>62</td>
<td>75</td>
<td>89</td>
<td>81</td>
<td>86</td>
<td>95</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>0</td>
<td>16</td>
<td>34</td>
<td>45</td>
<td>57</td>
<td>70</td>
<td>63</td>
<td>71</td>
<td>80</td>
<td>82</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>16</td>
<td>0</td>
<td>41</td>
<td>48</td>
<td>54</td>
<td>62</td>
<td>54</td>
<td>56</td>
<td>65</td>
<td>66</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>34</td>
<td>41</td>
<td>0</td>
<td>16</td>
<td>34</td>
<td>54</td>
<td>51</td>
<td>75</td>
<td>82</td>
<td>99</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>45</td>
<td>46</td>
<td>16</td>
<td>0</td>
<td>18</td>
<td>39</td>
<td>38</td>
<td>66</td>
<td>72</td>
<td>94</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>57</td>
<td>54</td>
<td>34</td>
<td>18</td>
<td>0</td>
<td>21</td>
<td>23</td>
<td>55</td>
<td>59</td>
<td>88</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>89</td>
<td>70</td>
<td>62</td>
<td>54</td>
<td>39</td>
<td>21</td>
<td>0</td>
<td>10</td>
<td>42</td>
<td>43</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>63</td>
<td>54</td>
<td>51</td>
<td>38</td>
<td>23</td>
<td>10</td>
<td>0</td>
<td>34</td>
<td>37</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>86</td>
<td>71</td>
<td>56</td>
<td>75</td>
<td>66</td>
<td>55</td>
<td>42</td>
<td>34</td>
<td>0</td>
<td>9</td>
<td>37</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>95</td>
<td>80</td>
<td>65</td>
<td>82</td>
<td>72</td>
<td>59</td>
<td>43</td>
<td>37</td>
<td>9</td>
<td>0</td>
<td>40</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>82</td>
<td>66</td>
<td>99</td>
<td>84</td>
<td>88</td>
<td>78</td>
<td>69</td>
<td>37</td>
<td>40</td>
<td>0</td>
<td>115</td>
</tr>
<tr>
<td>12</td>
<td>56</td>
<td>44</td>
<td>55</td>
<td>16</td>
<td>29</td>
<td>47</td>
<td>67</td>
<td>66</td>
<td>91</td>
<td>98</td>
<td>115</td>
<td>0</td>
</tr>
</tbody>
</table>
Let’s arbitrarily begin the tour with node *1*, i.e., \(T = \{1\} \), and \(N' = \{2,3,4,5,6,7,8,9,10,11,12\} \).

The nearest node to \(T=\{1\} \) is node 2.
Nearest Insertion

(Starting with node #1)

Insert node 2

©Dennis Bricker, U. of Iowa, 1997
The nearest node to the subtour $T = \{1, 2\}$ is node #3.
The nearest node to $T = \{1, 2, 3\}$ is node *4.*

<table>
<thead>
<tr>
<th>from</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>19</td>
<td>30</td>
<td>50</td>
<td>62</td>
<td>75</td>
<td>89</td>
<td>81</td>
<td>86</td>
<td>95</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>0</td>
<td>16</td>
<td>34</td>
<td>45</td>
<td>57</td>
<td>70</td>
<td>63</td>
<td>71</td>
<td>80</td>
<td>82</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>16</td>
<td>0</td>
<td>41</td>
<td>48</td>
<td>54</td>
<td>62</td>
<td>54</td>
<td>56</td>
<td>65</td>
<td>66</td>
<td>55</td>
</tr>
</tbody>
</table>

Node *4* can be inserted in the tour in 3 different ways:

1 → 4 → 2
2 → 4 → 3
3 → 4 → 1
We insert node #4 in such a way as to minimize the increase in tour length:

\[
\begin{array}{c|cccc}
\text{distances} & 1 & 2 & 3 & 4 \\
1 & 0 & 19 & 30 & 50 \\
2 & 19 & 0 & 16 & 34 \\
3 & 30 & 16 & 0 & 41 \\
4 & 50 & 34 & 41 & 0 \\
\end{array}
\]

Increase in tour length:

- \[50 + 34 - 19 = 65\]
- \[34 + 41 - 16 = 59\]

\[\text{minimum!}\]

- \[41 + 50 - 30 = 61\]

©Dennis Bricker, U. of Iowa, 1997
Insert node 5
Insert node 6... etc.
Nearest Insertion Tour: 6 7 8 10 9 11 3 2 1 12 4 5 6, with length 321

Note that the final tour varies according to the initial node in the tour!

©Dennis Bricker, U. of Iowa, 1997