Heuristic Algorithms for the Traveling Salesman Problem

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbbricker@icaen.uiowa.edu
Most heuristics are of one of two types:

- **Construction Heuristics**
 Add one arc after another to a tour, until the tour includes all nodes.

- **Improvement Heuristics**
 Given an initial tour, find an improved tour
Construction Heuristics

- Nearest Neighbor Algorithm
- Nearest Insertion Algorithm
- Farthest Insertion Algorithm
- Space-filling Curve Algorithm
Improvement Heuristics

Exchange Algorithm

Simulated Annealing
Example

30 CITIES

Random Symmetric TSP (seed= 185204)

©Dennis Bricker, U. of Iowa, 1997
Spacefilling Curve Heuristic

Random Symmetric TSP (seed= 185204)

Length: 664
Nearest Neighbor Heuristic

Random Symmetric TSP (seed= 185204)

Starting Node: #1
Length: 684

©Dennis Bricker, U. of Iowa, 1997
Nearest Neighbor Heuristic

Random Symmetric TSP (seed= 185204)

Starting Node: #10
Length: 633

©Dennis Bricker, U. of Iowa, 1997
Farthest Insertion Heuristic

Random Symmetric TSP (seed= 185204)

Starting Node: #1
Length: 513
Farthest Insertion Heuristic

Random Symmetric TSP (seed = 185204)

Starting Node: #10
Length: 516

© Dennis Bricker, U. of Iowa, 1997
Farthest Insertion Heuristic

Random Symmetric TSP (seed= 185204)

Starting Node: #20
Length: 508

©Dennis Bricker, U. of Iowa, 1997
Nearest Insertion Heuristic

Random Symmetric TSP (seed= 185204)

Starting Node: #10
Length: 610
Lin's 2-Opt Heuristic

Random Symmetric TSP (seed= 185204)

Starting Tour

Nearest Neighbor Tour, Originating at Node #5
Length: 620

©Dennis Bricker, U. of Iowa, 1997
Lin's 2-Opt Heuristic

Random Symmetric TSP (seed= 185204)

2-Optimal Tour
Length: 549

©Dennis Bricker, U. of Iowa, 1997
Lin’s 2-Opt Heuristic

Random Symmetric TSP (seed= 185204)

2-Optimal Tour
Length: 524

©Dennis Bricker, U. of Iowa, 1997
Lin’s 2-Opt Heuristic

Tour Lengths
Lin's 3-Opt Heuristic

Random Symmetric TSP (seed= 185204)

3-Optimal Tour
Length: 503

Starting with Farthest Insertion Heuristic
(origin: Node #20)
Iteration 1
Lower Bound: 445
Sum of excess degrees: 8

©Dennis Bricker, U. of Iowa, 1997
Iteration 2
Lower Bound: 451
Sum of excess degrees: 5
Iteration 3
Lower Bound: 452.7
Sum of excess degrees: 8

©Dennis Bricker, U. of Iowa, 1997
Iteration 4
Lower Bound: 463.545
Sum of excess degrees: 6
Iteration 5
Lower Bound: 472.0270833
Sum of excess degrees: 8
Iteration 6
Lower Bound: 475.0625781
Sum of excess degrees: 8

©Dennis Bricker, U. of Iowa, 1997
Iteration 7
Lower Bound: 477.417609
Sum of excess degrees: 4

©Dennis Bricker, U. of Iowa, 1997
<table>
<thead>
<tr>
<th>Iteration</th>
<th>Lower Bound</th>
<th>Excess Degree</th>
<th>Nodes at</th>
<th>Vertex Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>445</td>
<td>8</td>
<td>3 4 5 9 11 12 14 16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>446</td>
<td>7</td>
<td>5 6 7 10 13</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>445</td>
<td>10</td>
<td>2 8 14 15 18 24 25 26 29</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>469</td>
<td>5</td>
<td>4 7 12 15 28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>462</td>
<td>7</td>
<td>9 11 13 17 23</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>467</td>
<td>7</td>
<td>6 8 9 14 16 18 29</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>473</td>
<td>8</td>
<td>3 5 10 11 19</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>480</td>
<td>7</td>
<td>2 10 18 24 25 26</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>489</td>
<td>6</td>
<td>3 4 8 19 29</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>485</td>
<td>5</td>
<td>5 6 7 18 28</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>485</td>
<td>7</td>
<td>2 19 20 23 24 25 29</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>496</td>
<td>4</td>
<td>3 8 17 20</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>498</td>
<td>5</td>
<td>5 10 12 15 16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>499</td>
<td>5</td>
<td>6 7 9 11 13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>497</td>
<td>5</td>
<td>2 23 24 25 28</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>495</td>
<td>5</td>
<td>3 4 10 12</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>499</td>
<td>3</td>
<td>5 11 17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>494</td>
<td>7</td>
<td>2 6 7 15 16 25 26</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>496</td>
<td>5</td>
<td>8 13 23 24 29</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>497</td>
<td>5</td>
<td>3 4 14 26</td>
<td></td>
</tr>
</tbody>
</table>
2-Exchange Heuristic

Nearest Neighbor Tour, originating at Node #15
Length: 632
2-Exchange Heuristic

2-Optimal Tour Length: 548

(Starting search with Nearest Neighbor Tour originating at #15)

©Dennis Bricker, U. of Iowa, 1997
2-Exchange Heuristic

Tour Lengths

© Dennis Bricker, U. of Iowa, 1997
Simulated Annealing

Final Tour
Length: 613

(Beginning with tour of length 632)
Simulated Annealing

\[P(\text{Accept } = 25) \]

\[\text{Iteration #} \]

©Dennis Bricker, U. of Iowa, 1997