

©D.L.Bricker Dept of Mechanical & Industrial Engineering The University of Iowa **System reliability** is the *probability* that the system will *not fail* to perform

- within specified limits
- for a specified length of time
- in a specified environment

Define the *random variable*

T_{sys} = effective lifetime of the system with cumulative distribution function (CDF):

 $F_{sys}(t) = P\{T_{sys} \le t\}$

The *reliability function* is the complement of F_{sys} , i.e.,

R_{sys}(t) = 1 - F_{sys}(t) = P{T_{sys} > t} = P{system is functioning properly at time t}

System Reliabilty

Suppose that we know the reliabilities of the individual components of a system.

How do we estimate the reliability of the system?

System Reliabilty

- Components in series
- Components in parallel (redundancy)
- Partially redundant systems (m-out-of-n)

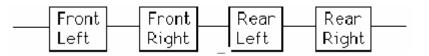
 Examples: hybrid systems with both series & parallel components
- Standby system
 - o With perfect switching
 - With imperfect switching
 - o With failures in standby mode

Etc.

Assume

- Any component may fail, independently of any other
- When one component fails, the system (device) fails.

Example: an automobile "fails" when any one of its tires fail:



Note that the tires are not physically arranged in series (i.e., tandem)!

 $R_s(t)$ = reliability of device

= P{all components survive until time t}

= P{component#1 survives until time t }

× P{component #2 survives until time t}

= $R_1(t) \times R_2(t)$

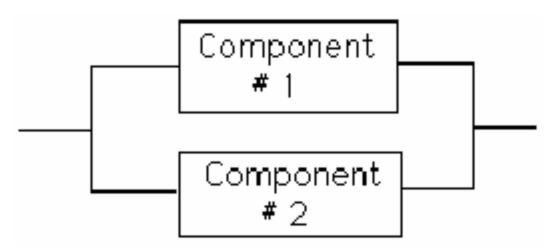
In general, for n components in series,

 $R_s(t) = R_1(t) \times R_2(t) \times ... \times R_n(t)$

PARALLEL COMPONENTS

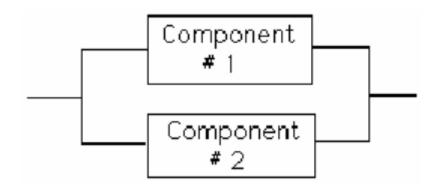
Assume:

- Components operate simultaneously (not "standby")
- All components must fail in order that the system fails



Example: a 2-engine plane fails only if *both* of its engines fail.

PARALLEL COMPONENTS



Let F_i(t) = 1 - R_i(t) = P{ component #i fails before time t }
 (CDF of the component's lifetime)
F_p(t) = P{ parallel system fails before time t }
 = P{ all components fail before time t }
 = P{ component #1 fails before time t}

× P{component #2 fails before time t}

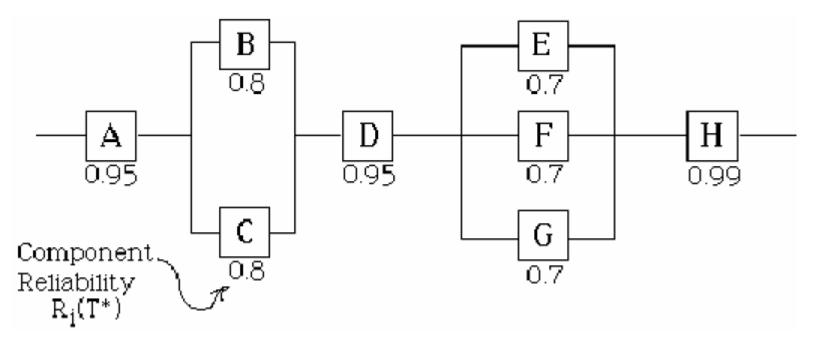
 $= F_1(t) \times F_2(t) = [1 - R_1(t)] \times [1 - R_2(t)]$

$$R_p(t) = 1 - F_p(t) = 1 - [1 - R_1(t)] \times [1 - R_2(t)]$$

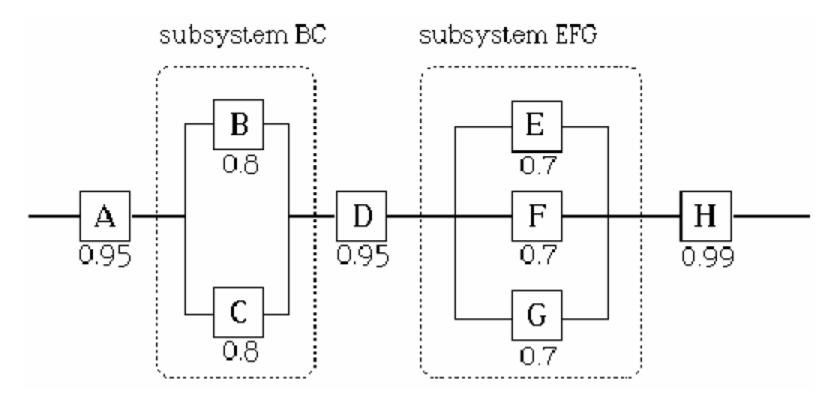
Hybrid System

Suppose that a system is designed to fulfill its mission for a planned lifetime T*.

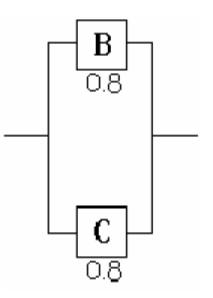
Find the reliability of the system, given the component reliabilities:



Decompose the system into series &/or parallel subsystems:



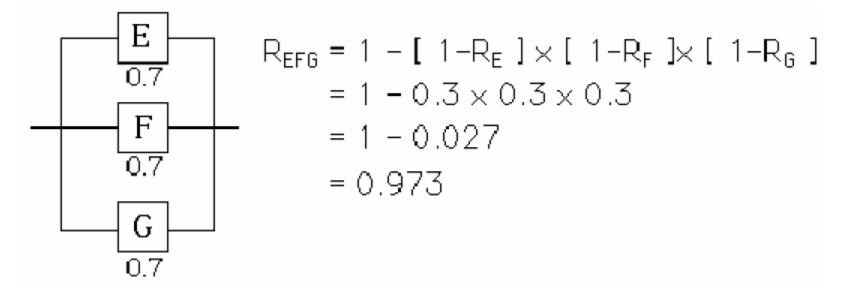
subsystem BC:

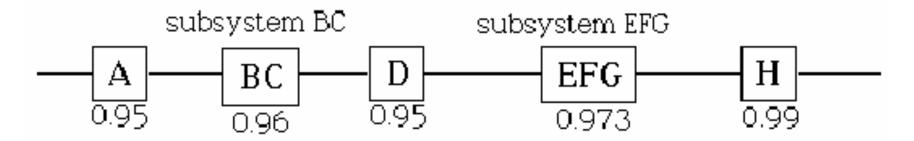


$$R_{BC} = 1 - [1 - R_B] \times [1 - R_C]$$

= 1 - 0.2×0.2
= 1 - 0.04
= 0.96

Subsystem EFG:



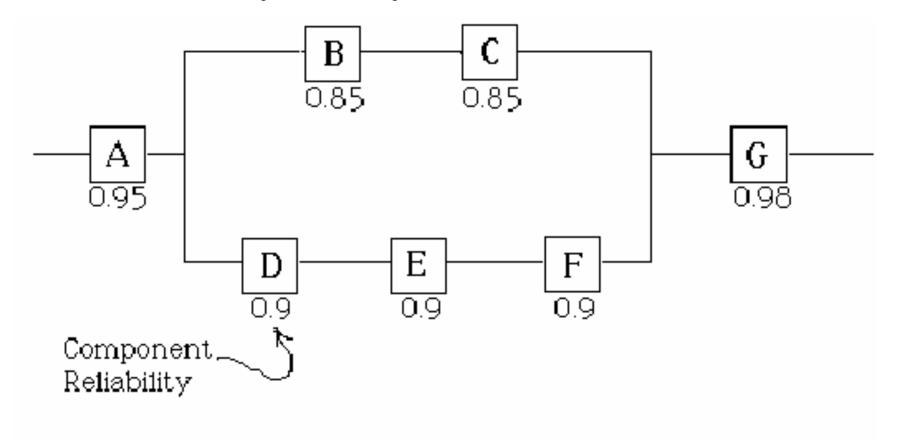


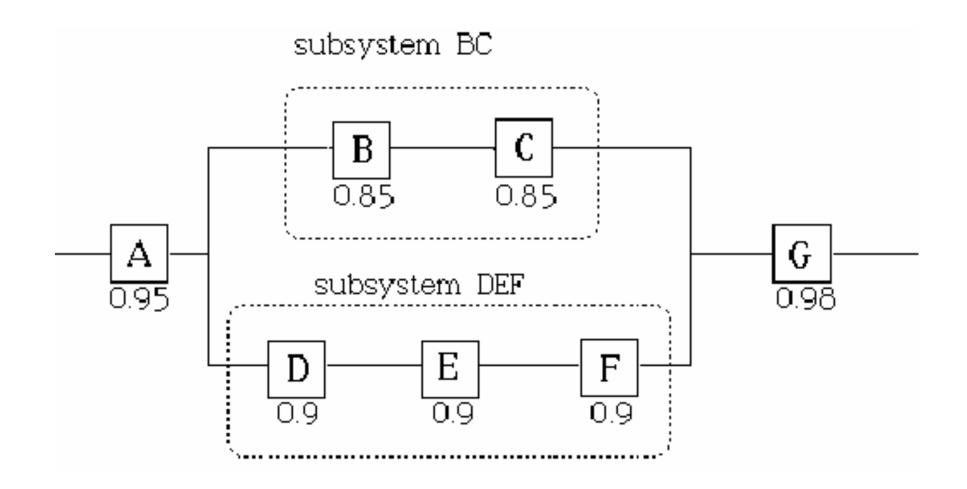
Reliability of series of subsystems:

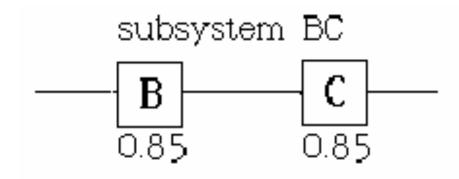
 $R_{system} = R_A \times R_{BC} \times R_D \times R_{EFG} \times R_H$ = (0.95)(0.96)(0.95)(0.973)(0.99)= 0.834577

Another Example:

Find the reliability of the system:

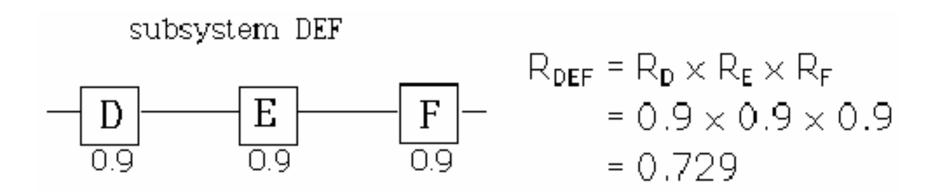


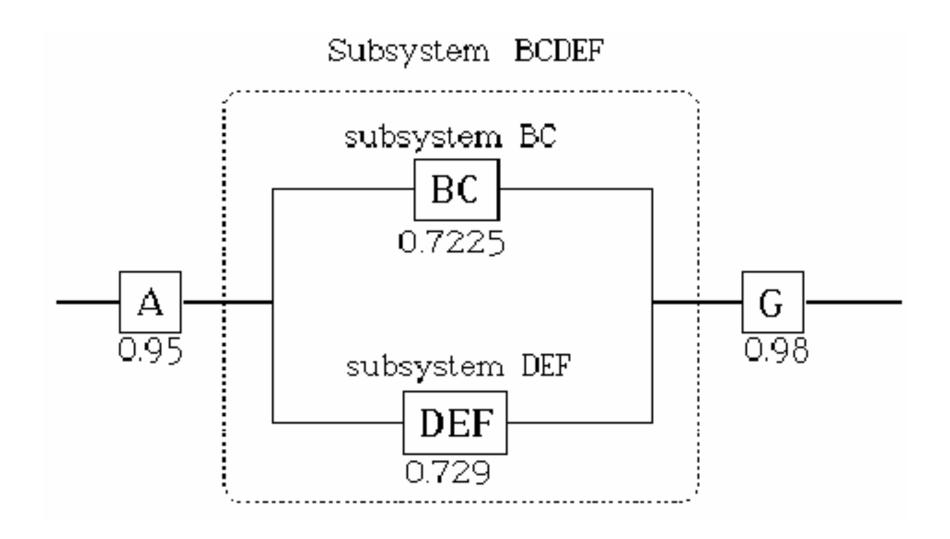


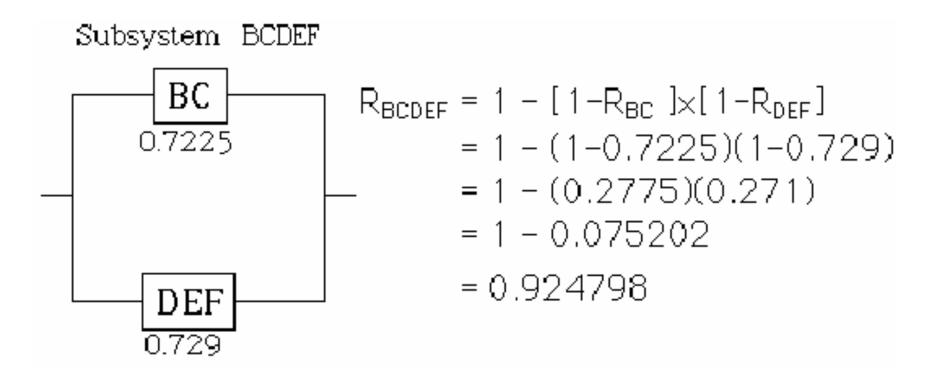


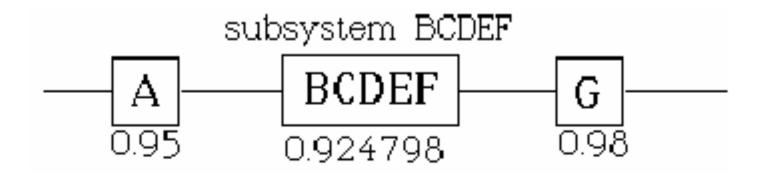
$$R_{BC} = R_B \times R_C$$

= 0.85 × 0.85
= 0.7225









$R_{system} = R_A \times R_{BCDEF} \times R_G$ = (0.95)(0.924798)(0.98)= 0.860987