Simplex Algorithm a summary:

Notation:

- \exists : "there exists"
- N: set of *nonbasic* columns
- BFS: "basic feasible solution"
- \underline{C}_i : reduced cost of column j
- \underline{a}_{ij} : substitution rate of column *j* for basic variable in row *i* (*i.e.*, the current tableau entry in constraint row *i*, column *j*)

Notes:

This flowchart assumes *minimization* in the optimality test (*box 3*).

	Phase One refers to a procedure to identify an initial basic
1	feasible solution (BFS), a problem which is itself an LP.
2	There exists a <i>BFS</i> if no artificial variable remains in the basis
	after Phase One.
3	Optimality test: if we were maximizing, we would check
	whether there is a <i>positive</i> \underline{C}_j .
4	Any column \hat{j} such that $\underline{C}_{j} < 0$ may be selected as pivot
	column (when minimizing).
5	Since the simplex pivot must be performed on a positive
	element of the tableau, we test whether such a positive
	element in column \hat{j} exists.

	If more than one $\underline{a}_{i\hat{j}}$ is positive in column \hat{j} , the minimum
	ratio test
6	$\min\left\{\frac{\underline{b}_{i}}{\underline{a}_{i\hat{j}}}: \underline{a}_{i\hat{j}} > 0\right\}$
	is used to choose the pivot row \hat{i} . (Ties may be broken
	arbitrarily, but will result in degeneracy at next tableau.)
7	Pivot , so that $\underline{a}_{\hat{i}\hat{j}}$ is replaced by 1.000 and the remainder of
7	the column \hat{j} is zero.
8	If Phase One cannot find a feasible solution, the simplex
	algorithm terminates.
9	The current basis is optimal. If one of the variables not in the
	basis has a zero reduced cost, then entering that variable into
	the basis will not cause the objective to change.

10	The simplex algorithm stops with a <i>single optimal solution</i> .
11	The simplex algorithm stops; the current basic solution is
	optimal, and at least one additional basis is also optimal.