This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dbricker@icaen.uiowa.edu
Given: M candidate locations, N customers
\[F_i = \text{fixed cost of establishing a plant at site } i, \quad i=1,2,...M \]
\[C_{ij} = \text{cost of supplying all demand of customer } j \text{ from plant } i, \quad j=1,2,...N \]

The Problem: Select a set of plant locations and allocation of customers to plants so as to minimize the total cost.

Note: there are no capacity constraints for a plant which has been selected, and the number of plants is not specified (unlike p-median problem)
ILP models of the SPL problem

Define variables:

\[Y_i = \begin{cases}
1 & \text{if plant site } i \text{ is selected} \\
0 & \text{otherwise}
\end{cases} \]

\[X_{ij} = \begin{cases}
1 & \text{if plant } i \text{ serves all demand of customer } j \\
0 & \text{otherwise}
\end{cases} \]
Model #1

Minimize \[\sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij} X_{ij} + \sum_{i=1}^{M} F_i Y_i \]

s.t. \[\sum_{i=1}^{M} X_{ij} = 1 \quad \forall \ j=1, \ldots, N \]

\[X_{ij} \leq Y_i \quad \forall \ i \text{&} j \]

\[Y_i \in \{0,1\}, \ X_{ij} \geq 0 \quad \forall \ i \text{&} j \]

Model #2

Replace constraints \[X_{ij} \leq Y_i \quad \forall \ i \text{&} j \]

with aggregated constraints

\[\sum_{j=1}^{N} X_{ij} \leq N Y_i \quad \forall \ i \]
Models #1 & #2 are equivalent, in that the feasible solution sets are identical.... But-- their LP relaxations (i.e., replacing $Y_i \in \{0,1\}$ with $0 \leq Y_i \leq 1$) are not!
Example

Minimize $-2X_{i1} - X_{i2}$

Cost = -3

Cost = -4

Feasible set for $X_{i1} + X_{i2} \leq 2$

Feasible set for $X_{i1} \leq 1$

$X_{i2} \leq 1$

Model #1 provides a higher, "better" lower bound on the optimum!

Model #2 is more "compact", and the LP relaxation is easier to solve.

©Dennis Bricker, U. of Iowa, 1997
LP Relaxation of Model #2

At the LP optimum,
\[\sum_{j=1}^{N} X_{ij} \leq N Y_i \quad \forall i \quad \text{is "tight"}, \]
i.e., \[Y_i = \frac{1}{N} \sum_{j=1}^{N} X_{ij} \]

Eliminate \(Y_i \)

Minimize
\[
\sum_{i=1}^{M} \sum_{j=1}^{N} C_{ij} X_{ij} + \sum_{i=1}^{M} \frac{1}{N} F_i \sum_{j=1}^{N} X_{ij}
\]

\[\Rightarrow \]

Minimize
\[
\sum_{i=1}^{M} \sum_{j=1}^{N} \left[C_{ij} + \frac{F_i}{N} \right] X_{ij}
\]

s.t.
\[\sum_{i=1}^{M} X_{ij} = 1 \quad \forall j = 1, \ldots, N \]
\[X_{ij} \geq 0 \quad \forall i \& j \]

©Dennis Bricker, U. of Iowa, 1997
The solution is
\[x^*_i = \begin{cases}
1 & \text{if } C_{ij} + \frac{F_i}{N} \leq C_{kj} + \frac{F_k}{N} \forall i \\
0 & \text{otherwise}
\end{cases} \]

with objective value
\[\sum_{j=1}^{N} \min_i \left(C_{ij} + \frac{F_i}{N} \right) \]

Although not a strong bound, this is easily computed:

\[\text{APL} +/ \ L \neq C + \emptyset(\Phi \rho C) \rho F \div N \]
4 = M = # potential plant sites
8 = N = # demand points

<table>
<thead>
<tr>
<th></th>
<th>j= 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>177</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>D</td>
<td>98</td>
<td>12</td>
<td>7</td>
<td>33</td>
<td>49</td>
<td>33</td>
<td>87</td>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>

©Dennis Bricker, U. of Iowa, 1997
Weak LP Relaxation of Simple Plant Location Problem

The Matrix $C + (F/N)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>144</td>
<td>146</td>
<td>148</td>
<td>149</td>
<td>145</td>
<td>144</td>
<td>143</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>130</td>
<td>125</td>
<td>130</td>
<td>120</td>
<td>128</td>
<td>130</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>180</td>
<td>182</td>
<td>184</td>
<td>186</td>
<td>181</td>
<td>182</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>136</td>
<td>134</td>
<td>132</td>
<td>135</td>
<td>133</td>
<td>138</td>
<td>136</td>
</tr>
</tbody>
</table>

The LP bound is found by summing the minima in each column.

Lower bound provided by weak LP relaxation = 1031.38

©Dennis Bricker, U. of Iowa, 1997
Model #3

Minimize \(\sum_{i=1}^{M} f_i(X_{i1}, X_{i2}, \ldots X_{iN}) \)

subject to \(\sum_{i=1}^{M} X_{ij} = 1 \quad \forall j=1,2,\ldots,N \)

\(X_{ij} \geq 0 \quad \forall i \& j \)

where

\[
f_i(X_{i1}, X_{i2}, \ldots X_{iN}) = \begin{cases}
0 & \text{if } \sum_{j=1}^{N} X_{ij} = 0 \\
F_i + \sum_{j=1}^{N} C_{ij} X_{ij} & \text{otherwise}
\end{cases}
\]

©Dennis Bricker, U. of Iowa, 1997
Surrogate Constraint

Define a *surrogate multiplier* for each constraint: \(U_j, j=1, \ldots, N; \sum_j U_j = 1 \).

Form a linear combination of the constraints

\[
\begin{align*}
U_1 \times \sum_i X_{i1} &= U_1 \times 1 \\
\vdots \\
U_N \times \sum_i X_{iN} &= U_N \times 1
\end{align*}
\]

\[
\Rightarrow \sum_j U_j \sum_i X_{ij} = \sum_j U_j \Rightarrow \sum_j \sum_i U_j X_{ij} = 1
\]

This *surrogate constraint* is implied by the original set of constraints, but is less restrictive.

© Dennis Bricker, U. of Iowa, 1997
Surrogate Relaxation

We replace the original constraints of Model #3 with the single surrogate constraint:

Minimize \[\sum_{i=1}^{M} f_i(X_{i1}, X_{i2}, \ldots X_{iN}) \]

subject to \[\sum_{j} \sum_{i} U_j X_{ij} = 1 \]

\[X_{ij} \geq 0 \ \forall \ i \& j \]

© Dennis Bricker, U. of Iowa, 1997
Because the objective function is concave, the theory of nonlinear programming assures us that an extreme point of the feasible region (i.e., a basic solution) is optimal, so only a single variable is $\neq 0$.

For example,

$$X_{ij} = \begin{cases}
\frac{1}{U_q} & \text{if } i=p, j=q \\
0 & \text{otherwise}
\end{cases}$$

with cost

$$F_p + C_{pq} \times \frac{1}{U_q}$$

for some p and q.

©Dennis Bricker, U. of Iowa, 1997
Therefore, we can solve the surrogate relaxation by enumerating the MxN basic solutions, and selecting the least cost solution:

\[S(U) = \min_{i,j} \left\{ F_i + \frac{C_{ij}}{U_j} \right\} \]

Because the optimal solution of the original SPL problem is feasible in this surrogate relaxation,

\[S(U) \leq \text{optimum of SPL problem} \]

for all \(U = (U_1, U_2, \ldots, U_N) \)
Surrogate Dual Problem

Since for each U, $S(U)$ gives us a lower bound on the SPL optimal value, select the surrogate multipliers U to give us the "best", i.e., greatest lower bound:

$$\hat{S} = \text{maximum } S(U)$$

s.t. $\sum_j U_j = 1$
Use of Surrogate Dual bound in a Branch-&-Bound algorithm

Given a value V (e.g., the incumbent solution), we can fathom a subproblem if its surrogate dual value \hat{S} exceeds V, and this may be tested without explicitly computing \hat{S}:

$$\hat{S} \geq V \iff \exists U=(U_1, \ldots, U_M) \text{ such that } \begin{cases} V \leq F_i + \frac{C_{ij}}{U_j} & \forall i \neq j \\ \sum_j U_j = 1 \end{cases}$$
Assuming $F_i < V$, this is equivalent to

\[
\begin{align*}
U_j & \leq \frac{C_{ij}}{V - F_i} \quad \forall i \& j \\
\sum_j U_j &= 1
\end{align*}
\]

which clearly has a solution if and only if the least upper bounds of $U_j, j=1,...,N$, have a sum ≥ 1:

\[
\tilde{S} \geq V \iff \sum_j \min_i \left(\frac{C_{ij}}{V - F_i} \right) \geq 1
\]
\[
\frac{C_{ij}}{V - F_i}
\]

\[
\begin{array}{cccccccccc}
0.44 & 0.08081 & 0.06285 & 0.3333 & 0.275 & 0.1481 & 0.2929 & 0 \\
1.076 & 0.06586 & 0.07684 & 0 & 0.4303 & 0.3622 & 0.8595 & 0.7706 \\
0.3443 & 0.07026 & 0.05738 & 0.3478 & 0.2295 & 0.1932 & 0.2037 & 0.274 \\
0.8682 & 0.07973 & 0.03101 & 0.2558 & 0.2713 & 0.3654 & 0.7708 & 0.691 \\
\end{array}
\]

Sum:

\[
\sum_j \min_i \left\{ \frac{C_{ij}}{V - F_i} \right\} = 1.023
\]

The conclusion of the comparison test is:

\[\hat{S} \geq V \ (= 1031) \]
By any of several methods, the equation

\[\sum_j \min_i \left\{ \frac{C_{ij}}{F_i} \right\} = 1 \]

may easily be solved for \(\hat{S} \) if the actual value of \(\hat{S} \) is necessary.
Surrogate Dual Algorithm

Lower bound = 1074, Upper bound = 1449
Estimated duality gap = 25.09%

Upper bound achieved by $Y = 1\ 1\ 1\ 1$, i.e.,
opening plants 1 2 3 4

(Not guaranteed to be optimal!)

©Dennis Bricker, U. of Iowa, 1997
Surrogate Dual Algorithm

\[
\text{Matrix } C = \mu (\phi_0 C)^{\rho (SD-F)}
\]

\[
\begin{bmatrix}
0.4198 & 0.0771 & 0.05997 & 0.318 & 0.2624 & 0.1414 & 0.2795 & 0 \\
1.027 & 0.0629 & 0.07339 & 0 & 0.411 & 0.346 & 0.8209 & 0.736 \\
0.3278 & 0.0669 & 0.05464 & 0.3312 & 0.2185 & 0.184 & 0.194 & 0.2609 \\
0.8289 & 0.07612 & 0.0296 & 0.2442 & 0.259 & 0.3489 & 0.7358 & 0.6597
\end{bmatrix}
\]

(\[y[i] = 1 \] if any column minimum, i.e., Lambda, is found in row \# i of the matrix above)

Surrogate multipliers

\[
\begin{array}{ccccccccc}
 j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\lambda[j] & 0.3278 & 0.0629 & 0.0296 & 0 & 0.2185 & 0.1414 & 0.194 & 0
\end{array}
\]

©Dennis Bricker, U. of Iowa, 1997
Theorem: If \(\mu_{ij} \geq 0 \) and \(\sum_{j=1}^{N} \mu_{ij} \leq F_i \ \forall i \),

then \(\sum_{j=1}^{N} \min_{i} \{C_{ij} + \mu_{ij}\} \) is a lower bound for the Simple Plant Location problem.

Note: If \(\mu_{ij} = \frac{F_i}{N} \ \forall i,j \), this is the lower bound provided by the LP relaxation of model #2! By appropriate choice of \(\mu_{ij} \), it may give us a better lower bound.
Proof: SPL model #1 may be written

\[
\Phi = \text{minimum} \sum_{i,j} C_{ij}X_{ij} + \sum_i \left(F_i - \sum_j \mu_{ij} \right) Y_i + \sum_{i,j} \mu_{ij} Y_i
\]

s.t. \(\sum_i X_{ij} = 1, \ X_{ij} \leq Y_i, \ X_{ij} \geq 0, \ Y_i \in \{0,1\} \ \forall i,j \)

\[
\Rightarrow \Phi \geq \sum_{i,j} C_{ij}X_{ij} + \sum_{i,j} \mu_{ij} Y_i \geq \sum_{i,j} C_{ij}X_{ij} + \sum_{i,j} \mu_{ij} X_{ij} = \sum_{i,j} \left(C_{ij} + \mu_{ij} \right) X_{ij}
\]

\[
\Rightarrow \text{minimum} \sum_{i,j} \left(C_{ij} + \mu_{ij} \right) X_{ij}
\]

s.t. \(\sum_i X_{ij} = 1, \ X_{ij} \leq Y_i, \ X_{ij} \geq 0, \ Y_i \in \{0,1\} \ \forall i,j \)

must give us a lower bound for SPL, namely

\[
\sum_{j=1}^N \min_j \{ C_{ij} + \mu_{ij} \}
\]

© Dennis Bricker, U. of Iowa, 1997
The dual problem is, then, to choose the quantities μ_{ij} so as to obtain the greatest lower bound, i.e.,

\[
\text{Maximize } \sum_{j=1}^{N} \min_{i} \{c_{ij} + \mu_{ij}\}
\]

s.t. \[\sum_{j} \mu_{ij} \leq F_{i} \forall i \]

$\mu_{ij} \geq 0 \forall i,j$
Maximize \[\sum_{j=1}^{N} \min_{i} \{ C_{ij} + \mu_{ij} \} \]

s.t. \[\sum_{j} \mu_{ij} \leq F_i \ \forall \ i \]

\[\mu_{ij} \geq 0 \ \forall \ i, j \]

The LP equivalent:

Maximize \[\sum_{j=1}^{N} Z_j \]

s.t. \[Z_j \leq C_{ij} + \mu_{ij} \ \forall \ i, j \]

\[\sum_{i} \mu_{ij} \leq F_i \ \forall \ i \]

\[\mu_{ij} \geq 0 \ \forall \ i, j \]

The dual of this LP is, in fact, the LP relaxation of SPL model #1!

©Dennis Bricker, U. of Iowa, 1997
Bilde-Krarup-Erlenkotter (BKE) Algorithm

This algorithm is a dual ascent algorithm for computing good feasible solutions to the dual of the LP relaxation of Model #1.

At each iteration, exactly one μ_{ij} is adjusted to give an improvement in the lower bound. It terminates when no improvement can be obtained by adjusting a single multiplier.
Step 1: k=1 & Lambda ← 294 60 28 0 196 132 174 0

Step 2a: ε = 98 0 0 0 0 0 0 0
Lambda[1] = 392
ε = 0 0 98 0, LB = 982

Step 2a: ε = 98 0 0 0 0 0 0 0
Lambda[2] = 60
ε = 0 0 98 0, LB = 982

Step 2a: ε = 98 0 21 0 0 0 0 0
Lambda[3] = 49
ε = 0 0 98 21, LB = 1003

Step 2a: ε = 98 0 21 120 0 0 0 0
Lambda[4] = 120
ε = 0 120 98 21, LB = 1123

©Dennis Bricker, U. of Iowa, 1997
Step 2a: $\epsilon = 98 \ 0 \ 21 \ 120 \ 49 \ 0 \ 0 \ 0$
$\Lambda(5) = 245$
$e = 0 \ 120 \ 147 \ 21, \ LB = 1172$

Step 2a: $\epsilon = 98 \ 0 \ 21 \ 120 \ 49 \ 33 \ 0 \ 0$
$\Lambda(6) = 165$
$e = 33 \ 120 \ 147 \ 21, \ LB = 1205$

Step 2a: $\epsilon = 98 \ 0 \ 21 \ 120 \ 49 \ 33 \ 30 \ 0$
$\Lambda(7) = 204$
$e = 33 \ 120 \ 177 \ 21, \ LB = 1235$

Step 2a: $\epsilon = 98 \ 0 \ 21 \ 120 \ 49 \ 33 \ 30 \ 107$
$\Lambda(8) = 107$
$e = 140 \ 120 \ 177 \ 21, \ LB = 1342$

Step 3: do not terminate. Set $k \leftarrow 2$

Step 2a: $\epsilon = 0 \ 0 \ 21 \ 120 \ 49 \ 33 \ 30 \ 107$
$\Lambda(1) = 392$
$e = 140 \ 120 \ 177 \ 21, \ LB = 1342$
Step 2a: ε = 0 0 21 120 49 33 30 107
Lambda[2] = 60
e = 140 120 177 21, LB = 1342

Step 2a: ε = 0 0 0 120 49 33 30 107
Lambda[3] = 49
e = 140 120 177 21, LB = 1342

Step 2a: ε = 0 0 0 0 49 33 30 107
Lambda[4] = 120
e = 140 120 177 21, LB = 1342

Step 2a: ε = 0 0 0 0 0 33 30 107
Lambda[5] = 245
e = 140 120 177 21, LB = 1342

Step 2a: ε = 0 0 0 0 0 0 30 107
Lambda[6] = 165
e = 140 120 177 21, LB = 1342
Step 2a: \(\epsilon = 00000000107 \)
\(\text{Lambda[7]} = 204 \)
\(\epsilon = 14012017721, \text{LB} = 1342 \)

Step 2a: \(\epsilon = 000000000 \)
\(\text{Lambda[8]} = 107 \)
\(\epsilon = 14012017721, \text{LB} = 1342 \)

Lower bound = 1342, Upper bound = 1342
Duality gap = 0%
No Duality Gap!

Upper bound achieved by \(Y = 1110 \),
i.e., opening plants 1 2 3

<table>
<thead>
<tr>
<th>Lagrange multipliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j)</td>
</tr>
<tr>
<td>(\text{Lambda[j]})</td>
</tr>
</tbody>
</table>

©Dennis Bricker, U. of Iowa, 1997
Summary of Results for Example Problem

Optimal Solution of SPL = 1342
LP Relaxation of Model #1 = 1342 0%
Surrogate Relaxation of Model #3 = 1074 20%
LP Relaxation of Model #2 = 1031.38 23%

gap