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Consider a constrained optimization problem

P: z=min{c(x)|xe X cR"}
and a problem
PR 2 =min{f(x)|xeT cR"|

The problem PRis a relaxation of problem P if:

e XcT, ie., every xfeasible in P is also feasible in PR,
and
e f(x)<c(x) VvxeX

Proposition: If PR is a relaxation of P, then its optimal value is a lower
bound of the optimal value of P:

7" <7.
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Notes:

e The solution zR of relaxation PR provides a guaranteed estimate on
the quality of a proposed solution of P: for any feasible xe X, the
maximum relative error is

c(x)—-2z"

ZR

e Relaxations are most frequently used in branch-&-bound algorithms
for combinatorial problems (providing a bound used in “fathoming”
nodes of the search tree.)

e To be useful, PR must be more easily solved than P.

e If P is a maximization problem, then the second condition in the
definition of a relaxation is f(x)>c(x) VxeX and as a result, the

relaxation provides an upper bound on z.
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Linear Programming Relaxation of Integer & Mixed-Integer LP

The most common relaxation of IP problems is the LP relaxation, in
which integer restrictions are removed:

P z:min{cx| AXZb,Xer}
where Z! is the set of n-dimensional vectors of non-negative integers.
ptP -z = min{cx| Ax=Db,x e Rf}

Note: in the definition of relaxation, let

c(x)=cx=f(x) and

X ={x|Ax2b,xeZ}} &T ={x| Ax>b,xeR!/
sothat XcT

Le., while the objective functions of P & PLP are the same, relaxing the
integer restrictions of an IP adds feasible solutions to the problem, so
that a lower minimum might be found.
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Lagrangian Relaxation of an Integer Programming Problem

Consider the IP problem
P: z:min{cx|Ax2b,xG X ng_‘}

Often, X is defined by additional linear constraints on the integer

variables, i.e., X :{X| Dx>e,Xe Zf}

Dropping the constraints Ax>b obviously satisfies the definition of a
relaxation, since

e the first condition is satisfied (the feasible region is expanded)

e the second condition is trivially satisfied (the objective is unchanged).
To obtain a more useful relaxation, we change the objective function as

well, using a vector of Lagrangian multipliers.
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Suppose that A is mxn, i.e., m constraints are being relaxed.

Let L € R be a vector of nonnegative numbers (Lagrangian multipliers),

one for each relaxed constraint.

For example, A, is the multiplier for constraint i
Zauxj_b i.e Za”xj—b 0.

In the feasible region, then, the product of A, and ZlauxJ —b. is non-
=1

negative, i.e., A, [Za” J IjZO, so that

e Sa-n e
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The Lagrangian relaxation of P is therefore defined to be

P(1):  z"(x)=min{cx—A(Ax—b)|xe X}

since, as we have shown,

for any A>0 and xe X, f(x)=cx—A(Ax—b)<cx

Note that outside the feasible region,

Ax-b<0=A(Ax—-b)<0
so that the objective f(x)=cx—A(Ax—b) may be thought of as including

a penalty for violating the constraints.
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Lagrangian Duality
Every choice of the Lagrangian multipliers A>0 yields a Lagrangian

relaxation, i.e., a lower bound on the optimal value z.

The Lagrangian dual problem is to choose multipliers to obtain the

greatest lower bound, i.e.,

D": 7" =max{z"(%)|1 20

This is, in effect, a maxi-min problem, since evaluating the dual

objective function z"(A) requires solving a minimization problem.

Note that 7" <z ,i.e., z—Z" >0. This nonnegative difference is called

the duality gap.
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Lagrangian Dual Problem:

Find A>0 so that the Lagrangian relaxation yields the greatest lower
bound of z:

P : 7" =max{z"(1)|1 20}

Obviously,
z>7">z7"(L) VA20

and the difference z-7">0 is called the Lagrangian duality gap.
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If * is the optimal dual solution, then the solution X(k*) of the
Lagrangian relaxation P"(1*) is generally infeasible in the primal

problem, i.e., Ax(A*)2b is violated.

If x(1*) is feasible in the primal, is it optimal???

Sometimes X(1*) can be easily adjusted so as to satisfy the constraints

(although optimality is not guaranteed)...

a so-called “Lagrangian heuristic” method
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The constraints of an [P may be partitioned in several ways

A b
x> -

D e

where X = {x| Dx>e,xe Zf}, so that several Lagrangian dual problems

may be defined, with duality gaps of various sizes. (See Generalized

Assignment Problem (GAP) )

“No free lunch” principle: usually, the smaller the duality gap, the

more difficult it is to solve the Lagrangian relaxation!
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Surrogate Duality
As in Lagrangian duality, nonnegative multipliers are defined, but used

to aggregate the constraints:

u>0& Ax>b = pAx>pub

Surrogate Relaxation:

P*(n): z°(n)=min{cx|uAx>pb,x e X}

P®(u)is easily seen to be a relaxation, since

B the objective is unchanged
B the feasible region is enlarged

Surrogate Dual Problem:

pS: max{is (u)|u20}
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Lagrangian Duality
Every choice of the Lagrangian multipliers A>0 yields a Lagrangian

relaxation, i.e., a lower bound on the optimal value z.

The Lagrangian dual problem is to choose multipliers to obtain the

greatest lower bound, i.e.,

D": 7" =max{z"(%)|1 20

This is, in effect, a maxi-min problem, since evaluating the dual

objective function z"(A) requires solving a minimization problem.

Note that 7" <z ,i.e., z—Z" >0. This nonnegative difference is called

the duality gap.
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Combinatorial or IP problems may be classified as

o “Easy” problems
polynomial-time algorithms exist

examples: shortest path problem
minimum spanning tree problem
transportation problem
assignment problem

o “Hard” problems
no polynomial-time algorithms are known

examples: traveling salesman problem
scheduling problems
quadratic & generalized assignment problems
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Often a hard problem may be modeled as an easy problem with
additional complicating constraints.
Example: Generalized Assignment Problem
a multiple-choice problem, with additional machine capacity
limits
Example: Shortest Hamiltonian Path Problem (like a traveling
salesman problem except route is a path rather than a cycle)

a minimum spanning tree problem, with node degrees at most 2.
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