Bulk Arrivals

This Hypercard stack was prepared by:
Dennis L. Bricker,
Dept. of Industrial Engineering,
University of Iowa,
Iowa City, Iowa 52242
e-mail: dennis-bricker@uiowa.edu
"Customers" arrive in batches of size K, with batch arrivals forming a Poisson process with rate λ.

Service time for each customer has exponential distribution with mean $\frac{1}{K\mu}$, i.e., time to process the batch has mean $\frac{1}{\mu}$.

©D. Bricker, U. of Iowa, 1997
Continuous-Time Markov Chain

K = 3

Not a birth-death process!
Continuous-Time Markov Chain

This C-T Markov chain is equivalent to that for the M/E\(_K\)/1 queue!
Bulk Arrivals, with Random-Sized Batches

Let \(\lambda \) = arrival rate of batches
\(\alpha_k \) = probability that batch contains
k customers, \(k=1,2,3,... K \)
\(\mu \) = service rate for each customer
Balance Equations

\[
\lambda \pi_0 = \mu \pi_1 \\
\vdots \\
\left[(\alpha_1 + \alpha_2 + \cdots) \lambda + \mu \right] \pi_m = \mu \pi_{m+1} + \sum_{k=1}^{m-1} \alpha_k \lambda \pi_{m-k}
\]

©D. Bricker, U. of Iowa, 1997