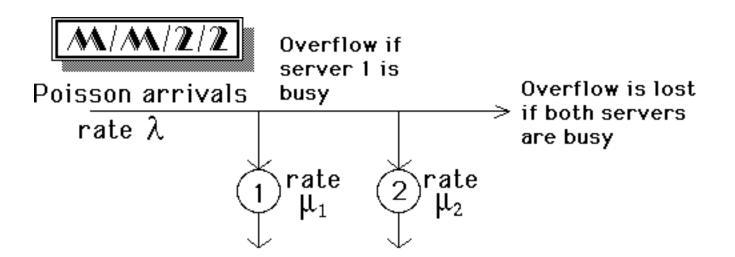


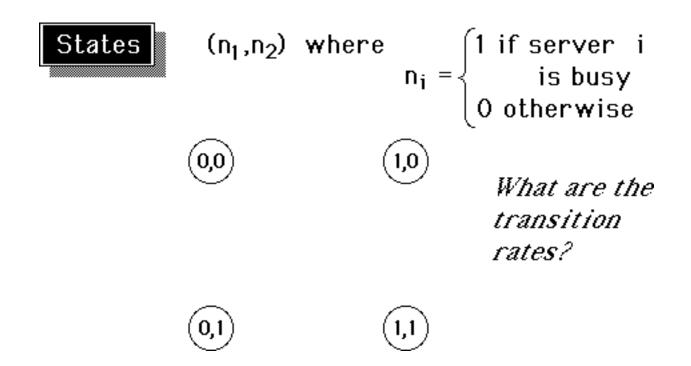
M/M/2/2 Queueing System

Two Tandem Servers w/o Queues

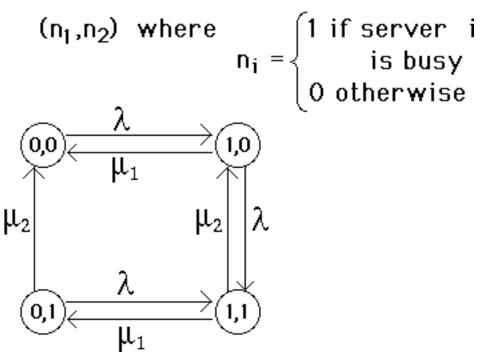
Two Tandem Servers w/intervening Queue


M/M/1 System with feedback

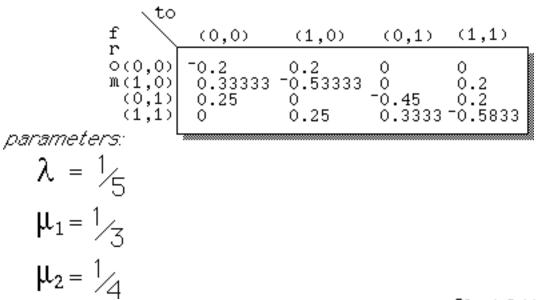
Two Cyclic Queues

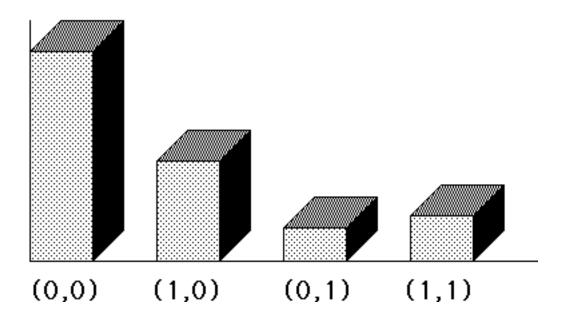


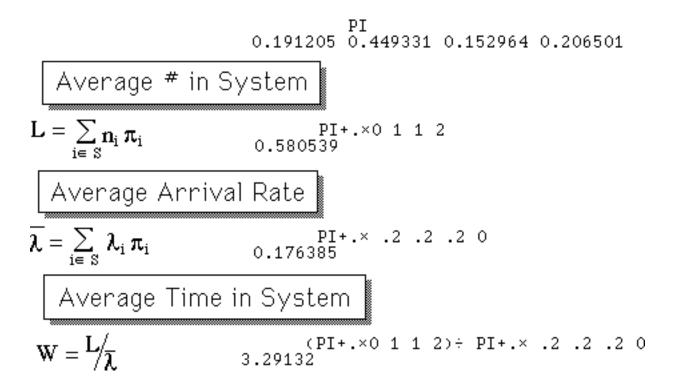
Two Tandem Queues w/infinite capacity



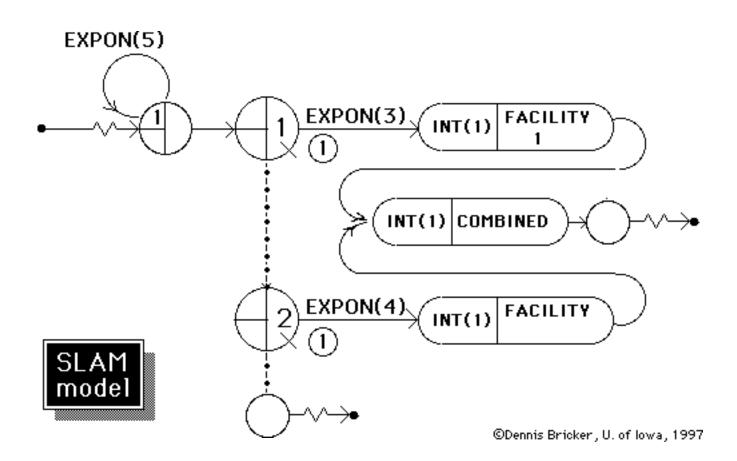
We want to compute: • steady-state distribution

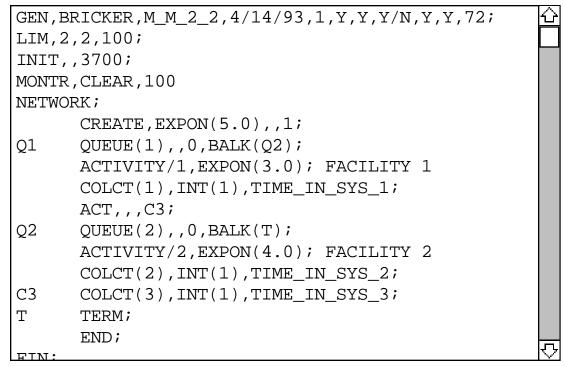

- fraction of customers lost
- utilization of each server

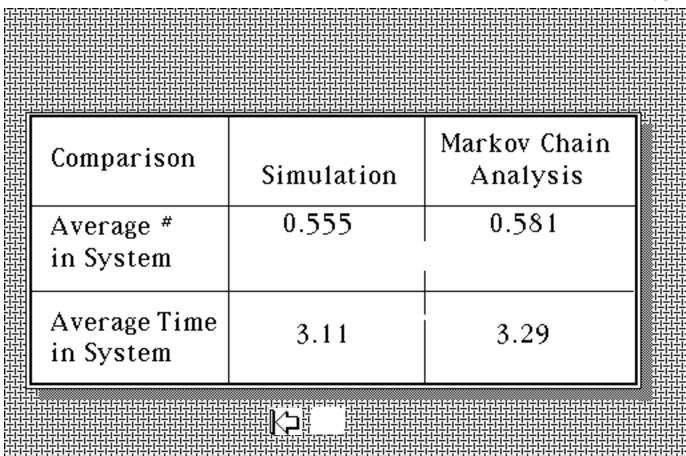

Transition rate matrix



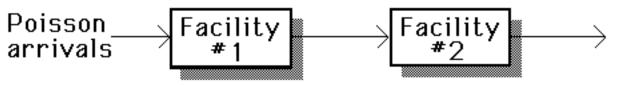
Steadystate Distribution


i	state	Pi
1	(0,0)	0.537536
2	(1,0)	0.256924
3	(0,1)	0.0874636
4	(1,1)	0.118076


Steady-State Distribution

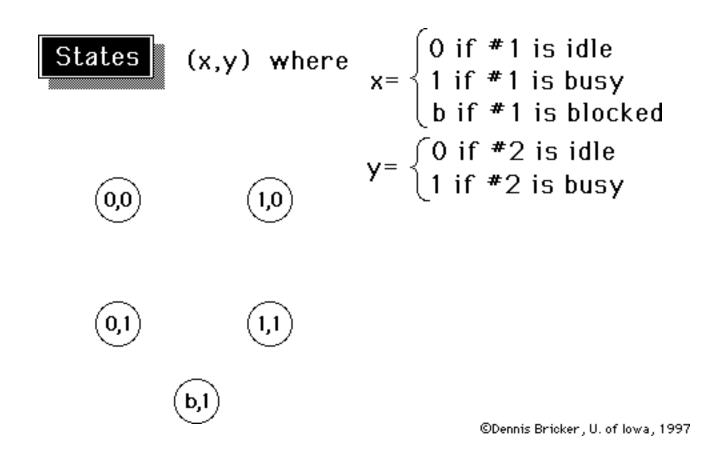


STATISTICS FOR VARIABLES BASED ON OBSERVATION


	MEAN VALUE		COEFF. OF VARIATION		MAXIMUM VALUE	NO.OF OBS
TIME_IN_SYS_1 TIME_IN_SYS_2 TIME_IN_SYS_3	0.367E+01	0.386E+01	0.101E+01 0.105E+01 0.104E+01	0.234E-01	0.253E+02	459 186 645

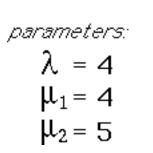
SERVICE ACTIVITY STATISTICS

	ACT LABEL OR START NODE	SER CAP		 	 	MAX BSY TME/SER	
_	FACILITY 1 FACILITY 2	_	0.368 0.187	 -	 		



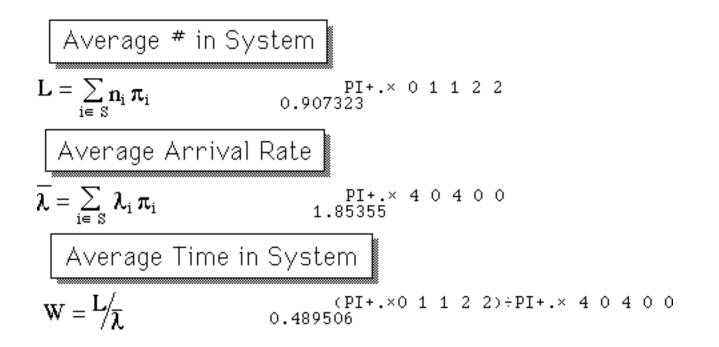
2 Tandem Servers, with no queues

- 2 identical servers, with exponentially dist'd service times
- No queues allowed in front of either server
- Server 1 is "blocked" whenever it has completed service while server 2 is busy
- Arrivals at #1 are turned away when it is busy or blocked


©Dennis Pricker, U. of Iowa, 1997.

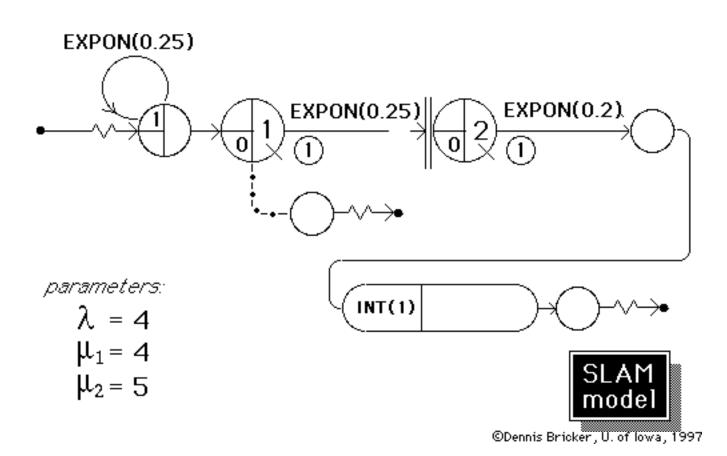
Tandem Servers w/o queues

Transition rate matrix



to
f 1 2 3 4 5
r
$$-4$$
 4 0 0 0
m 2 0 -4 4 0 0
3 5 0 -9 4 0
4 0 5 0 -9 4
5 0 0 5 0 -5

Tandem Servers w/o queues

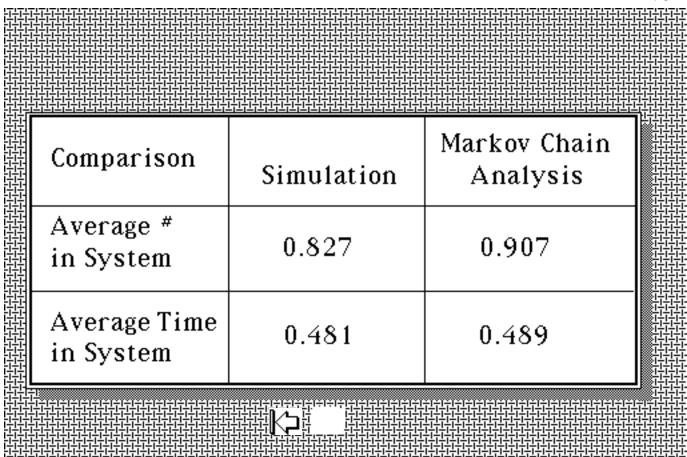

Steadystate Distribution

i	state	Pi
1	(0,0)	0.257437
2	(1,0)	0.371854
3	(0,1)	0.20595
4	(1,1)	0.0915332
5	(b,1)	0.0732265

©Dennis Bricker, U. of Iowa, 1997

GEN, BRICKER, TANDEM, 4/14/93,1,Y,Y,Y/N,Y,Y,72; LIM, 2,2,100; INIT,,3700; MONTR, CLEAR, 100 NETWORK; CREATE, EXPON(0.25),,1; Q1 QUEUE(1),,0,BALK(T); ACTIVITY/1,EXPON(0.25); FACILITY 1 Q2 QUEUE(2),,0,BLOCK; ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END; FIN;			
<pre>INIT,,3700; MONTR,CLEAR,100 NETWORK; CREATE,EXPON(0.25),,1; Q1 QUEUE(1),,0,BALK(T); ACTIVITY/1,EXPON(0.25); FACILITY 1 Q2 QUEUE(2),,0,BLOCK; ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END;</pre>	GEN,B	RICKER, TANDEM, $4/14/93$, 1, Y, Y, Y/N, Y, Y, 72;	쇼
<pre>MONTR,CLEAR,100 NETWORK;</pre>	LIM,2	,2,100;	
<pre>NETWORK;</pre>	INIT,	,3700;	
<pre>CREATE,EXPON(0.25),,1; Q1 QUEUE(1),,0,BALK(T); ACTIVITY/1,EXPON(0.25); FACILITY 1 Q2 QUEUE(2),,0,BLOCK; ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END;</pre>	MONTR	,CLEAR,100	
Q1 QUEUE(1),,0,BALK(T); ACTIVITY/1,EXPON(0.25); FACILITY 1 Q2 QUEUE(2),,0,BLOCK; ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END;	NETWO	RK;	
ACTIVITY/1, EXPON(0.25); FACILITY 1 Q2 QUEUE(2),,0,BLOCK; ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END;		CREATE, EXPON(0.25),,1;	
Q2 QUEUE(2),,0,BLOCK; ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END;	Q1	QUEUE(1),,0,BALK(T);	
ACTIVITY/2,EXPON(0.20); FACILITY 2 COLCT(1),INT(1),TIME_IN_SYS; T TERM; END;		ACTIVITY/1,EXPON(0.25); FACILITY 1	
COLCT(1), INT(1), TIME_IN_SYS; T TERM; END;	Q2	QUEUE(2),,0,BLOCK;	
T TERM; END;		ACTIVITY/2,EXPON(0.20); FACILITY 2	
END;		COLCT(1), INT(1), TIME_IN_SYS;	
	Т	TERM;	
FIN;		END;	
\sim	FIN;		Ţ

8/22/00


STATISTICS FOR VARIABLES BASED ON OBSERVATION

MEANSTANDARDCOEFF. OFMINIMUMMAXIMUMNO. OFVALUEDEVIATIONVARIATIONVALUEOBSTIME_IN_SYS0.481E+000.322E+000.671E+000.586E-020.287E+016708

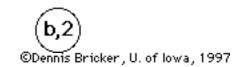
FILE STATISTICS

FILE NUMBER	LAF	BEL/TYPE	AVERAGE LENGTH	STANDARD DEVIATION	MAXIMUM LENGTH	CURRENT LENGTH	AVERAGE WAIT TIME
1 2	Q1 Q2	QUEUE QUEUE **SERVICE	0.000 0.000 ACTIVITY ST	0.000	0 0	0 0	0.000 0.000

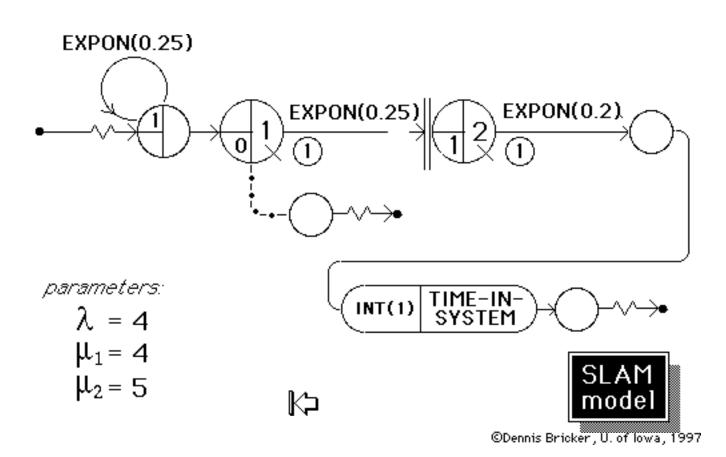
ACT ACT LABEL OR NUM START NODE		VERAGE UTIL	 	 	MAX BSY TME/SER	
1 FACILITY 1 2 FACILITY 2	-	0.463 0.364	 -	 2.43 2.78	2.42 1.71	

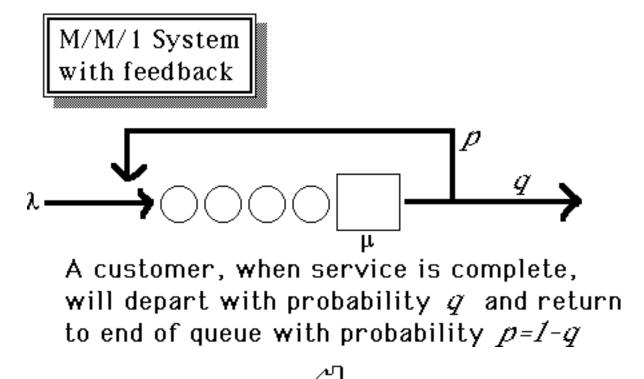
Suppose that we add space for 1 customer to wait between the two facilities...

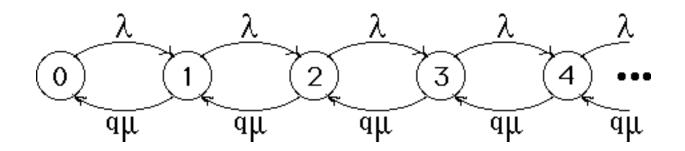
$$\begin{array}{ccc} \text{Poisson} & & & \\ \hline \text{arrivals} & & & \\ \hline \texttt{arrivals} & & \texttt{Facility} & & \\ \hline \texttt{arrivals} & & \texttt{Facility} & & \\ \hline \texttt{queue} & & \\ \hline \texttt{queue} & & \\ \hline \texttt{facility} & & \\ \hline \texttt{facili$$

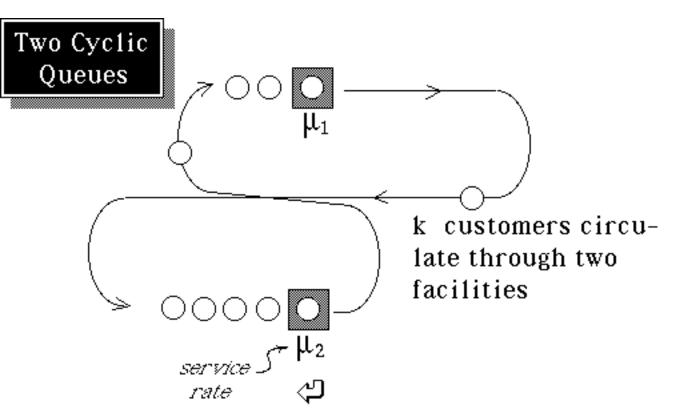

States
$$0,0$$
 $1,0$ x,y) where $0,0$ $1,0$ x = $\begin{cases} 0 \text{ if } #1 \text{ is idle} \\ 1 \text{ if } #1 \text{ is busy} \\ b \text{ if } #1 \text{ is blocked} \end{cases}$ $0,1$ $1,1$ y = $\begin{cases} 0 \text{ if } #2 \text{ is idle} \\ 1 \text{ if } #2 \text{ is busy} \\ 2 \text{ if customer waits} \\ between \end{cases}$ $0,2$ $1,2$ (0,2) $1,2$ (0,2) $1,2$

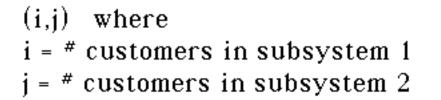
Transition Diagram

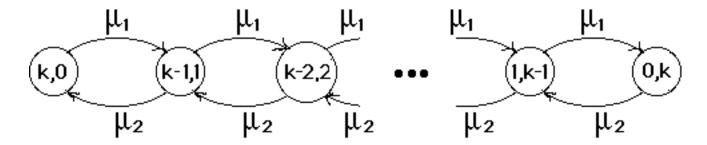




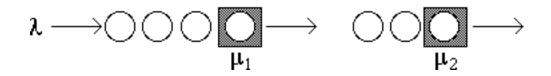


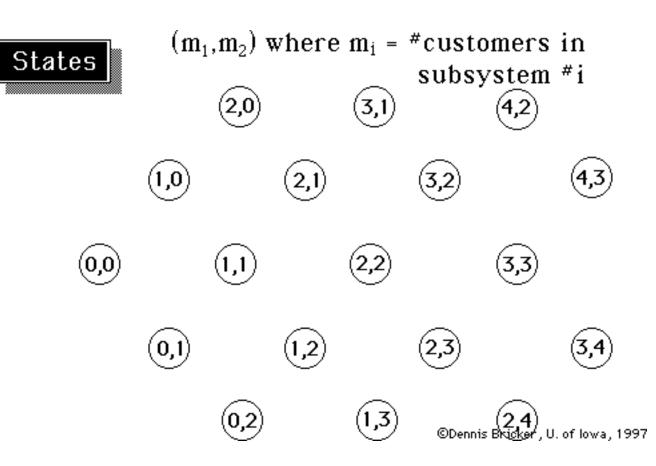


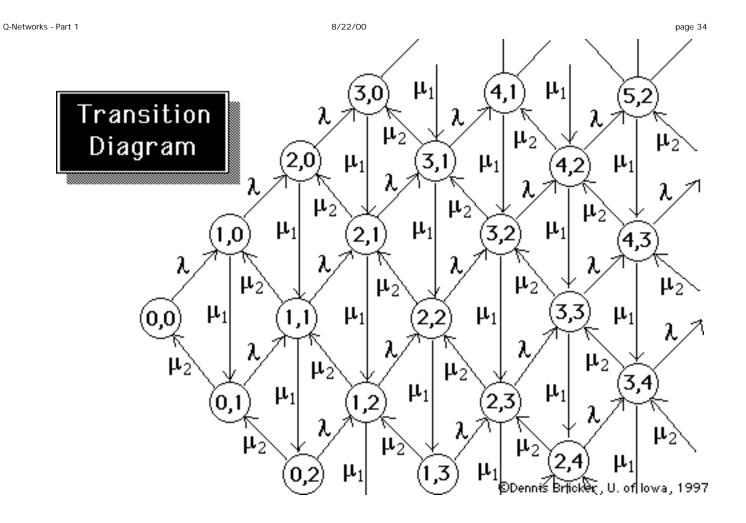


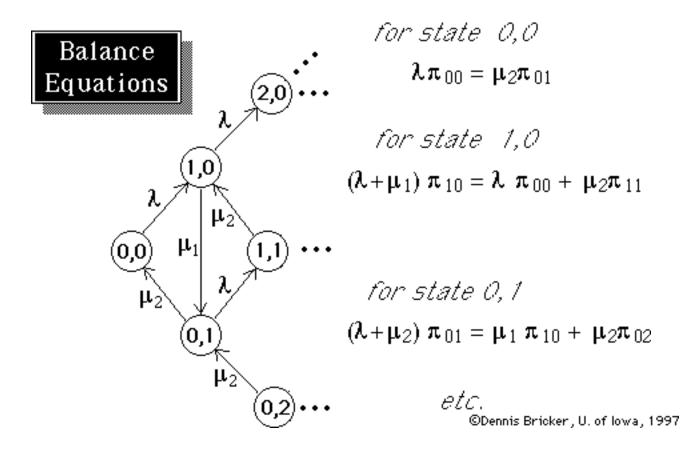

©Dennis Bricker, U. of Iowa, 1997

©Dennis Bricker, U. of Iowa, 1997


States




Is this a birth-death process? Compare with M/M/1/k queueing system!


Two Tandem Queues with infinite capacity

Balance Equations

$$\lambda \pi_{00} = \mu_2 \pi_{01}$$

$$(\lambda + \mu_1) \pi_{10} = \lambda \pi_{00} + \mu_2 \pi_{11}$$

$$(\lambda + \mu_2) \pi_{01} = \mu_1 \pi_{10} + \mu_2 \pi_{02}$$

$$(\lambda + \mu_1) \pi_{20} = \lambda \pi_{10} + \mu_2 \pi_{21}$$

$$(\lambda + \mu_1 + \mu_2) \pi_{11} = \lambda \pi_{01} + \mu_1 \pi_{20} + \mu_2 \pi_{12}$$

$$(\lambda + \mu_2) \pi_{02} = \mu_1 \pi_{11} + \mu_2 \pi_{03}$$

We get infinitely many equations in infinitely many unknowns!

Claim: these balance equations are satisfied
by
$$\pi_{m_1,m_2} = \pi_{m_1}^1 \times \pi_{m_2}^2$$

where $\pi_{m_i}^i = (1 - \rho_i) \rho_i^{m_i}$, $\rho_i = \lambda/\mu_i$
is the steady-state distribution of the
 $M/M/1$ queue

That is, $P\{m_1 \text{ at station } 1 \& m_2 \text{ at station } 2\}$ $= P\{m_1 \text{ at station } 1\} \times P\{m_2 \text{ at station } 2\}$

Substituting into

$$\lambda \pi_{00} = \mu_{2} \pi_{01}$$

$$\pi_{m_{1},m_{2}} = \pi_{m_{1}}^{1} \times \pi_{m_{2}}^{2}$$

$$\pi_{m_{i}}^{i} = (1-\rho_{i}) \rho_{i}^{m_{i}}, \rho_{i} = \lambda/\mu_{i}$$

$$yields \quad \lambda \quad (1-\lambda/\mu_{1}) \quad (1-\lambda/\mu_{2}) = \mu_{2} (1-\lambda/\mu_{1}) (1-\lambda/\mu_{2}) \lambda/\mu_{2}$$
Substituting into
$$(\lambda + \mu_{1}) \pi_{10} = \lambda \pi_{00} + \mu_{2} \pi_{11}$$

$$yields$$

$$(\lambda + \mu_{1}) (1-\lambda/\mu_{1}) \lambda/\mu_{1} \quad (1-\lambda/\mu_{2}) =$$

$$\lambda \quad (1-\lambda/\mu_{1}) (1-\lambda/\mu_{2}) + \mu_{2} (1-\lambda/\mu_{1}) \lambda/\mu_{1} \quad (1-\lambda/\mu_{2}) \lambda/\mu_{2}$$

etc.