Milkman's Problem A Graph Theoretical Model

The problem

A milkman has three containers of capacities 8 gallons, 5 gallons, and 3 gallons. The 8-gallon container is full of milk. How can he divide the milk into two 4-gallon portions without using anything but his three containers?

page 2

Define the *state* of the system to be (x,y,z) where x= # gallons of milk in 8-gallon container y= # gallons of milk in 5-gallon container z= # gallons of milk in 3-gallon container The initial state, then, is (8,0,0)

page 3

The desired state is (4,4,0)

What are the intermediate states to get from (8,0,0) to (4,4,0)?

Possible states are

#	State	#	State	#	State
1	(8,0,00	9	(5,1,2)	17	(3,3,2)
2	(7,1,0)	10	(5,0,3)	18	(3,2,3)
3	(7,0,1)	11	(4,4,0)	19	(2,5,1)
4	(6,2,0)	12	(4,3,1)	20	(2,4,2)
5	(6,1,1)	13	(4,2,2)	21	(2,3,3)
6	(6,0,2)	14	(4,1,3)	22	(1,5,2)
7	(5,3,0)	15	(3,5,0)	23	(1,4,3)
8	(5,2,1)	16	(3,4,1)	24	(0,5,3)

	8	7	7	6	6	6	5	5	5	5	4	4	4	4	3	3	3	3	2	2	2	1	1	0
	0	1	0	2	1	0	3	2	1	0	4	3	2	1	5	4	3	2	5	4	3	5	4	5
	0	0	1	0	1	2	0	1	2	3	0	1	2	3	0	1	2	3	1	2	3	2	3	3
1] 8 0 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
2] 7 1 0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
3] 7 0 1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4] 620	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
5] 611	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
6] 602	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0
7] 5 3 0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8] 521	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
9] 512	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
10] 5 0 3	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
11] 4 4 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
12] 4 3 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
13] 4 2 2	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
14] 4 1 3	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
15] 3 5 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
16] 3 4 1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
17] 3 3 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0
18] 3 2 3	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
19] 2 5 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
20] 2 4 2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0
21] 2 3 3	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22] 1 5 2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
23] 1 4 3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1
24] 0 5 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

A D A C N Y

page 7

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 11 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 8 0 1 1 0 0 1 0 0 0 1 1 1 22 | 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 23 | 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 24 | 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1

R

Row #1 of the first ten powers of the adjacency matrix

n	1	2	3	4	6	7	10	11	14	15	18	22	23	24
1	0	0	0	0	0	0	1	0	0	1	0	0	0	0
2	2	0	0	0	0	1	0	0	0	0	1	0	0	2
3	0	0	0	1	0	0	4	0	0	5	0	0	0	0
4	9	0	0	0	1	4	0	0	0	1	6	0	0	9
5	1	0	0	7	0	0	20	0	0	25	1	1	0	1
6	45	0	0	1	8	20	2	0	0	11	32	0	1	46
7	13	0	0	40	1	2	105	1	0	132	12	9	0	14
8	237	0	0	13	49	105	28	0	1	89	172	1	10	246
9	117	1	0	221	14	28	563	11	0	718	102	59	1	129
10	1281	0	0	116	280	563	261	1	12	642	939	15	70	1341

This indicates that there is one path from node # 1 to node # 11, i.e., $(8,0,0) \rightarrow (4,4,0)$, of length 7 edges.

Shortest Paths Originating at Node #1

	_	<u> </u>	
From	Length	Predecessor	
1	0	0	
2	9	14	
3	10	2	
4	3	18	
6	4	4	
7	2	10	
10	1	1	
11	7	23	
14	8	11	
15	1	1	
18	2	15	
22	5	6	
23	6	22	
24	2	10	

From	Length	Predece	ssor
1	0	0	
2	9	14	That is, on the path originating
3	10	2	at node #1, the predecessor of
4	3	18	node #11 is node #23.
6	4	4	$(1,4,3) \rightarrow (4,4,0)$
7	2	10	
10	1	1	The predecessor of node #23 is
11	7	23	node #22
14	8	11	$(1,5,2) \rightarrow (1,4,3)$
15	1	1	The predecessor of node #22 is
18	2	15	node #6
22	5	6	$(6,0,2) \rightarrow (1,5,2)$
23	6	22	
24	2	10	etc.

Tracing through the predecessor list, we find that the path from state 1 to state 11 is:

That is,

```
8,0,0®3,5,0 Fill #2 from #1
3,5,0®3,2,3 Fill #3 from #1
3,2,3®6,2,0 Empty #3 into #1
6,2,0®6,0,2 Empty #2 into #3
6,0,2®1,5,2 Fill #2 from #1
1,5,2®1,4,3 Fill #3 from #2
1,4,3®4,4,0 Empty #3 into #1
```

- a. Represent each state by a node of a graph, with edges linking states which can be obtained by pouring milk from one container to another. For example, from the initial state of the system, #1, i.e., (8,0,0), states #10 and 15 can be obtained by a single operation.
- b. Is state #11 reachable from state #1? If so, by what path?
- c. Give instructions to the milkman which explain the steps which he must perform to solve his problem.
- d. Is there a state which is *not* reachable from #1?