Milkman's Prohlem A Craph Theoretical Modell

The problem

A milkman has three containers of capacities 8 gallons, 5 gallons, and 3 gallons. The 8 -gallon container is full of milk. How can he divide the milk into two 4-gallon portions without using anything but his three containers?

page 2

Define the state of the system to be (x, y, z) where $\mathrm{x}=$ \# gallons of milk in 8-gallon container $\mathrm{y}=$ \# gallons of milk in 5-gallon container $\mathrm{z}=$ \# gallons of milk in 3-gallon container
The initial state, then, is $(8,0,0)$

page 3

The desired state is $(4,4,0)$

What are the intermediate states to get from $(8,0,0)$ to $(4,4,0)$?

Possible states are

$\#$	State	$\#$	State	$\#$	State
1	$(8,0,00$	9	$(5,1,2)$	17	$(3,3,2)$
2	$(7,1,0)$	10	$(5,0,3)$	18	$(3,2,3)$
3	$(7,0,1)$	11	$(4,4,0)$	19	$(2,5,1)$
4	$(6,2,0)$	12	$(4,3,1)$	20	$(2,4,2)$
5	$(6,1,1)$	13	$(4,2,2)$	21	$(2,3,3)$
6	$(6,0,2)$	14	$(4,1,3)$	22	$(1,5,2)$
7	$(5,3,0)$	15	$(3,5,0)$	23	$(1,4,3)$
8	$(5,2,1)$	16	$(3,4,1)$	24	$(0,5,3)$

				8	7	7	6	6	6	5	5	5	5	4	4	4	4	3	3	3	3	2	2	2	1	1	0
				1	0	2	1	0	3	2	1	0	4	3	2	1	5	4	3	2	5	4	3	5	4	5	
1$]$	8	0	0	0	1	0	1	2	0	1	2	3	0	1	2	3	0	1	2	3	1	2	3	2	3	3	
$2]$	7	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
$3]$	7	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
$4]$	6	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
$5]$	6	1	1																								
$6]$	6	0	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0
0	0	0																									
$7]$	5	3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
$8]$	5	2	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0																							
$9]$	5	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0
$10]$	5	0	3	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
$11]$	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
$12]$	4	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
$13]$	4	2	2	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0
$14]$	4	1	3	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
$15]$	3	5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
$16]$	3	4	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
$17]$	3	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0
$18]$	3	2	3	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$19]$	2	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
$20]$	2	4	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0
$21]$	2	3	3	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$22]$	1	5	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
$23]$	1	4	3	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1
$24]$	0	5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

page 6

	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4
1	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
2	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
3	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
4	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
5	1	1	1	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1
6	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
7	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
8	1	1	1	1	0	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1
9	1	1	1	1	0	1	1	0	1	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
10	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
11	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
12	1	1	1	1	0	1	1	0	0	1	1	1	0	1	1	0	0	1	1	0	1	1	1	1
13	1	1	1	1	0	1	1	0	0	1	1	0	1	1	1	0	0	1	0	0	0	1	1	1
14	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
15	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
16	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	1	0	1	1	0	0	1	1	1
17	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1
18	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
19	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1
20	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	1	1	1	1	1
21	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	1	1	1	1
22	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
23	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1
24	1	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	1	1

Row \#1 of the first ten powers of the adjacency matrix

n	1	2	3	4	6	7	10	11	14	15	18	22	23	24
1	0	0	0	0	0	0	1	0	0	1	0	0	0	0
2	2	0	0	0	0	1	0	0	0	0	1	0	0	2
3	0	0	0	1	0	0	4	0	0	5	0	0	0	0
4	9	0	0	0	1	4	0	0	0	1	6	0	0	9
5	1	0	0	7	0	0	20	0	0	25	1	1	0	1
6	45	0	0	1	8	20	2	0	0	11	32	0	1	46
7	13	0	0	40	1	2	105	1	0	132	12	9	0	14
8	237	0	0	13	49	105	28	0	1	89	172	1	10	246
9	117	1	0	221	14	28	563	11	0	718	102	59	1	129
10	1281	0	0	116	280	563	261	1	12	642	939	15	70	1341

This indicates that there is one path from node \# 1 to node \# 11 , i.e., $(8,0,0) \rightarrow(4,4,0)$, of length 7 edges.

Shortest		
From	Paths Originating at Node \#1	
1	Length	Predecessor
2	0	0
3	9	14
4	10	2
6	3	18
7	4	4
10	2	10
11	1	1
14	7	23
15	8	11
18	1	1
22	2	15
23	5	6
24	6	22
	2	10

From	Length	Predecessor	
1	0	0	
2	9	14	That is, on the path originating
3	10	2	at node \#1, the predecessor of
4	3	18	node \#11 is node \#23.
6	4	4	$(1,4,3) \rightarrow(4,4,0)$
7	2	10	The predecessor of node \#23 is
10	1	1	node \#22
11	7	23	no
14	8	11	$(1,5,2) \rightarrow(1,4,3)$
15	1	1	The predecessor of node \#22 is
18	2	15	node \#6
22	5	6	$(6,0,2) \rightarrow(1,5,2)$
23	6	22	etc.
24	2	10	

Tracing through the predecessor list, we find that the path from state 1 to state 11 is:
$1 \rightarrow 15 \rightarrow 18 \rightarrow 4 \rightarrow 6 \rightarrow 22 \rightarrow 23 \rightarrow 11$

That is,

$$
\begin{array}{ll}
8,0,0 \rightarrow 3,5,0 & \text { Fill \#2 from \#1 } \\
3,5,0 \rightarrow 3,2,3 & \text { Fill \#3 from \#1 } \\
3,2,3 \rightarrow 6,2,0 & \text { Empty \#3 into \#1 } \\
\mathbf{6}, \mathbf{2}, 0 \rightarrow 6,0,2 & \text { Empty \#2 into \#3 } \\
\mathbf{6}, 0,2 \rightarrow \mathbf{1}, 5,2 & \text { Fill \#2 from \#1 } \\
\mathbf{1 , 5 , 2 \rightarrow 1 , 4 , 3} & \text { Fill \#3 from \#2 } \\
1,4,3 \rightarrow 4,4,0 & \text { Empty \#3 into \#1 }
\end{array}
$$

a. Represent each state by a node of a graph, with edges linking states which can be obtained by pouring milk from one container to another. For example, from the initial state of the system, \#1, i.e., $(8,0,0)$, states \#10 and 15 can be obtained by a single operation.
b. Is state \#11 reachable from state \#1? If so, by what path?
c. Give instructions to the milkman which explain the steps which he must perform to solve his problem.
d. Is there a state which is not reachable from \#1?

